模拟退火算法(Simulated Annealing)

模拟退火算法是一种启发式优化方法,模仿热力学退火过程寻找问题的近似最优解。算法包括初始化温度和解状态,然后在每次迭代中尝试改进解,并根据特定概率接受较劣解以避免局部最优。它具有高效、并行化、鲁棒性和渐近收敛性的优点。C语言的实现使得该算法能在实际应用中部署。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模拟退火算法(Simulated Annealing)


1 模拟退火算法介绍

  模拟退火算法属于启发式优化算法中的一种,该算法通过不断地在当前解的周围寻找更优解来进行迭代从而找到问题的最优解。
  模拟退火算法如其名,类似于热力学中的退火过程。在某个给定的初始温度下,随着温度的不断下降,算法将在多项式时间内寻找到问题的近似最优解。


2 步骤

  1. 初始化温度T,初始解状态S,每个温度t下的迭代次数L
  2. 当k = 1,2,……,L时,进行3~6
  3. 对当前解进行变换得到新解S’(例如对某些解中的元素进行互换,置换)
  4. 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数
  5. 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/(KT))接受S′作为新的当前解(k为玻尔兹曼常数,数值为:K=1.3806505(24) × 10^-23 J/K)
  6. 如果满足终止条件则输出当前解作为最优解,结束程序。
  7. 减小T,转到第2步,直到T小于初始设定的阈值。

此处输入图片的描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值