最简单的直接按照递推式去写
#include <stdio.h>
#include <string.h>
char a[1001], b[1001];
int tag[1001][1001];
#define max(a, b) a > b ? a : b
int f(int i, int j)
{
if (i < 0 || j < 0) return 0;
if (tag[i][j] != -1) return tag[i][j];
if (a[i] == b[j]) return tag[i][j] = f(i - 1, j - 1) + 1;
else return tag[i][j] = Max(f(i - 1, j), f(i, j - 1));
}
int main()
{
int N;
scanf("%d", &N);
while (N--)
{
memset(tag, -1, sizeof(tag));
scanf("%s %s", a, b);
printf("%d\n", f(strlen(a) - 1, strlen(b) - 1));
}
return 0;
}
空间消耗tag[1005][1005] + 递归栈内存的消耗
所以第一步的优化就是用循环来替代递归,减少找内存的消耗
#include <stdio.h>
#include <string.h>
char a[1001], b[1001];
int dp[1005][1005] = {0};
#define max(a, b) a > b ? a : b
int f(int len1, int len2)
{
memset(dp, 0, sizeof(dp));
for (int i = 1; i <= len1; i++)
{
for (int j = 1; j <= len2; j++)
{
if (a[i - 1] != b[j - 1]) dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
else dp[i][j] = dp[i - 1][j - 1] + 1;
}
}
return dp[len1][len2];
}
int main()
{
int N;
scanf("%d", &N);
while (N--)
{
scanf("%s %s", a, b);
printf("%d\n", f(strlen(a), strlen(b)));
}
return 0;
}
循环版本辅助空间就是一个dp[1005][1005],但是可以到我们计算f(i, j)时,只需要dp[i][j]的第i-1、i行,而不需要一整个数组,所以我们可以用dp1[1005], dp2[1005], 来存储之前的最优解,当计算完dp2后,交换指针,让之前的dp2数组做最优解,用dp1数组继续计算下去。
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
char s1[1005], s2[1005];
int f(int len1, int len2)
{
int tag1[1005] = {0}, tag2[1005];
int *q, *p, *t;
p = tag1;
q = tag2;
for (int i = 1; i <= len1; i++)
{
for (int j = 1; j <= len2; j++)
{
if (s1[i - 1] == s2[j - 1]) q[j] = p[j - 1] + 1;
else q[j] = max(p[j], q[j - 1]);
}
t = p; p = q; q = t;
}
return p[len2];
}
int main()
{
int casen;
scanf("%d", &casen);
while (casen--)
{
scanf("%s%s", s1, s2);
printf("%d\n", f(strlen(s1), strlen(s2)));
}
return 0;
}
这样动态规划的空间就是dp1[1005] + dp2[1005], 空间优化到O(n)的时间复杂度,准确的说是2*n的辅助空间。
仔细分析递推式,我们计算f(i, j)其实最终只用到了f(i - 1, j) f(i - 1, j - 1) , f(i, j - 1)三个变量,所以当我们计算完一行最优价时, 我们就有了f(i - 1, j - 1)、f(i - 1, j),但是缺一个f(i, j - 1),但是当我们计算到f(i, j)时,其实f(i, j - 1)已经有结果了,只是f(i, j - 1)的结果把f(i - 1, j - 1)给覆盖了,所以实际上我们只需要一个dp[1005], 然后用一个pre来保存f(i - 1, j - 1)的值即可
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
char s1[1005], s2[1005];
int f(int l1, int l2)
{
int tag[1005] = {0};
int pre, t;
for (int i = 1; i <= l1; i++)
{
pre = 0;
for (int j = 1; j <= l2; j++)
{
t = tag[j];
if (s1[i - 1] == s2[j - 1]) tag[j] = pre + 1;
else tag[j] = max(tag[j], tag[j - 1]);
pre = t;
}
}
return tag[l2];
}
int main()
{
int casen;
scanf("%d", &casen);
while (casen--)
{
scanf("%s%s", s1, s2);
printf("%d\n", f(strlen(s1), strlen(s2)));
}
return 0;
}
此时空间复杂度到了到了真正的n