动态规划的空间优化, 以最长公共子序列为例

f(i, j) = \left\{\begin{matrix} f(i - 1, j - 1) + 1& s[i] == s[j] \\ max(f(i - 1, j), f(i, j - 1))& s[i] != s[j] \end{matrix}\right

最简单的直接按照递推式去写

#include <stdio.h> 
#include <string.h> 

char a[1001], b[1001]; 
int tag[1001][1001]; 

#define max(a, b) a > b ? a : b

int f(int i, int j) 
{ 
	if (i < 0 || j < 0) return 0; 
	
	if (tag[i][j] != -1) return tag[i][j]; 
	if (a[i] == b[j])    return tag[i][j] = f(i - 1, j - 1) + 1; 
	else return tag[i][j] = Max(f(i - 1, j), f(i, j - 1)); 
} 

int main() 
{ 
	int N; 

	scanf("%d", &N); 

	while (N--) 
	{ 
		memset(tag, -1, sizeof(tag)); 
		scanf("%s %s", a, b); 
		printf("%d\n", f(strlen(a) - 1, strlen(b) - 1)); 
	} 
	return 0; 
}

空间消耗tag[1005][1005] + 递归栈内存的消耗

所以第一步的优化就是用循环来替代递归,减少找内存的消耗

#include <stdio.h> 
#include <string.h> 

char a[1001], b[1001]; 
int dp[1005][1005] = {0};

#define max(a, b) a > b ? a : b 

int f(int len1, int len2) 
{ 
	
	memset(dp, 0, sizeof(dp));
	for (int i = 1; i <= len1; i++)
	{
		for (int j = 1; j <= len2; j++)
		{
			if (a[i - 1] != b[j - 1]) dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
			else dp[i][j] = dp[i - 1][j - 1] + 1;
		}
	}
	return dp[len1][len2];
} 

int main() 
{ 
	int N; 

	scanf("%d", &N); 

	while (N--) 
	{ 
		scanf("%s %s", a, b); 
		printf("%d\n", f(strlen(a), strlen(b))); 
	} 
	return 0; 
}

循环版本辅助空间就是一个dp[1005][1005],但是可以到我们计算f(i, j)时,只需要dp[i][j]的第i-1、i行,而不需要一整个数组,所以我们可以用dp1[1005], dp2[1005], 来存储之前的最优解,当计算完dp2后,交换指针,让之前的dp2数组做最优解,用dp1数组继续计算下去。

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;

char s1[1005], s2[1005];

int f(int len1, int len2)
{
	int tag1[1005] = {0}, tag2[1005];
	int *q, *p, *t;
	
	p = tag1;
	q = tag2;
	
	for (int i = 1; i <= len1; i++)
	{
		for (int j = 1; j <= len2; j++)
		{
			if (s1[i - 1] == s2[j - 1]) q[j] = p[j - 1] + 1;
			else q[j] = max(p[j], q[j - 1]);
		}
		t = p; p = q; q = t;
	} 
	return p[len2];
}

int main()
{
	int casen;
	
	scanf("%d", &casen);
	while (casen--)
	{
		scanf("%s%s", s1, s2);
		printf("%d\n", f(strlen(s1), strlen(s2)));
	}
	
	return 0;
}    

这样动态规划的空间就是dp1[1005] + dp2[1005], 空间优化到O(n)的时间复杂度,准确的说是2*n的辅助空间。

仔细分析递推式,我们计算f(i, j)其实最终只用到了f(i - 1, j) f(i - 1, j - 1) , f(i, j - 1)三个变量,所以当我们计算完一行最优价时, 我们就有了f(i - 1, j - 1)、f(i - 1, j),但是缺一个f(i, j - 1),但是当我们计算到f(i, j)时,其实f(i, j - 1)已经有结果了,只是f(i, j - 1)的结果把f(i - 1, j - 1)给覆盖了,所以实际上我们只需要一个dp[1005], 然后用一个pre来保存f(i - 1, j - 1)的值即可

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;

char s1[1005], s2[1005];

int f(int l1, int l2)
{
	int tag[1005] = {0};
	int pre, t;
	
	for (int i = 1; i <= l1; i++)
	{
		pre = 0;
		for (int j = 1; j <= l2; j++)
		{
			t = tag[j];
			if (s1[i - 1] == s2[j - 1]) tag[j] = pre + 1;
			else tag[j] = max(tag[j], tag[j - 1]);
			pre = t;
		}
	}
	return tag[l2];
}

int main()
{
	int casen;
	
	scanf("%d", &casen);
	while (casen--)
	{
		scanf("%s%s", s1, s2);
		printf("%d\n", f(strlen(s1), strlen(s2)));
	}
	
	return 0;
}        

此时空间复杂度到了到了真正的n

PID算法是一种常见的控制算法,用于实现控制系统的自动控制。在温度控制中,PID算法可以通过监测温度和设定温度之间的误差来控制加热器的输出功率,以达到稳定温度的目的。 PID算法由三个部分组成:比例(P)、积分(I)和微分(D)。这三个部分的作用分别是: 比例(P):根据误差大小调整输出,使其与误差成正比例关系。比例控制器的输出与误差成正比例关系,即输出=Kp*误差,其中Kp为比例系数。比例控制器可以快速响应温度变化,但容易产生较大的超调。 积分(I):根据误差累计调整输出,使输出与误差积分成比例关系。积分控制器的输出与误差的积分成正比例关系,即输出=Ki*积分误差,其中Ki为积分系数。积分控制器可以消除稳态误差,但响应速度较慢。 微分(D):根据误差变化率调整输出,使输出与误差变化率成比例关系。微分控制器的输出与误差变化率成正比例关系,即输出=Kd*导数误差,其中Kd为微分系数。微分控制器可以抑制超调,但容易产生振荡。 PID控制器的输出可以表示为: 输出=Kp*误差+Ki*积分误差+Kd*导数误差 其中,误差为设定温度与实际温度之差,积分误差为误差的积分,导数误差为误差的导数。 在温度控制中,PID算法可以实现以下步骤: 1.测量实际温度,并计算误差。 2.根据误差计算比例项、积分项和微分项。 3.将三个项加权相加,得出PID控制器的输出。 4.根据输出调整加热器的输出功率,使实际温度逐渐接近设定温度。 5.重复以上步骤,直到实际温度稳定在设定温度附近。 需要注意的是,PID算法的参数(比例系数、积分系数和微分系数)需要根据具体的控制系统进行调整。不同的系统可能需要不同的参数设置,以达到最优的控制效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值