准确率、召回率及mAP

本文探讨了在性能评估中常用的mAP(mean Average Precision)指标,首先介绍了准确率(Precision)和召回率(Recall)的基本概念及其权衡关系,并指出在不同场景下对这两者的侧重。接着,解释了AP(Average Precision)的计算原理,即PR曲线下的面积,最后阐述了mAP的定义和计算公式,强调其在目标检测算法评估中的重要性。
摘要由CSDN通过智能技术生成

最近在看毕业设计相关的论文,mAP这个性能评估指标多次出现,因此谈谈自己对mAP的理解。然而,看mAP前,我们需要先了解下P和R的概念
(1)Precision:准确率,又称查准率,指所有检索到的文件中,相关文件所占的比率。
(2)Recall:召回率,又称查全率,指所有相关文件中,检索到的文件所占的比率。
图源:
图源:http://www.vanjor.org/blog/2010/11/recall-precision/ (侵删)
注意:在实际应用中,准确率和召回率就像鱼和熊掌,不可兼得:准确率高时,召回率低;召回率高时,准确率低。

因此,我们要根据应用场景选择相应的侧重点:如果是单纯做搜索,那就是保证召回的情况下提升准确率;如果做疾病监测、反垃圾,则是保准确率的条件下,提升召回。当两者都要求高的情况下,我们可以用F1来衡量。

F1 = 2 * P * R / (P + R)
  • AP:Average Precision,即对召回率取平均,也等于PR曲线下的面积
    PR曲线
  • mAP:mean Average Precision,即平均AP值,常用于预测对象以及类的算法中,公式如下所示
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值