语义分割学习笔记--使用paddlepaddle实现各大经典模型

最近参加了百度举办的图像分割7日打卡营,课程链接https://aistudio.baidu.com/aistudio/course/introduce/1767,在课程中有大佬老师带领着从算法原理到代码实现,还是aistudio平台特斯拉V100GPU可以白嫖。话不多说,先上图
32G内存的V00显卡,不要太爽
可以看到显卡为32G内存的V00,跑深度学习模型不要太爽
在这里插入图片描述
看一下图片和分割结果
在这里插入图片描述
DeepLabv3+的网络结构图
在这里插入图片描述
语义分割,实例分割和全景分割分别是什么。简单来说,语义分割就是给每个像素分类,实例分割就是把每个物体的像素标出来,不同物体(比如不同的人)分为不同的类,不考虑背景,把两者结合就是全景分割。
在这里插入图片描述
后面的课程还有对图卷积网络的介绍,以及实例分割的经典网络模型,如Mask R-CNN。
在这里插入图片描述
语义分割经典网络,我最喜欢UNet,因为我的研究方向是偏医学影像处理的。PSPNet和DeepLab也很好用,在课程中都有代码实现,为了不剧透这里就暂时不放代码了。顺便说一下朱老师手敲代码的能力我是佩服的五体投地。
在这里插入图片描述
这是最开始介绍的ppt,FCN网络是最早的工作,不过现在不常用了。FCN那篇文章有几万的1引用了,可以说是深度学习做语义分割的开山之作。
在这里插入图片描述
最后介绍一下课程的考核,其实大部分时间要花在自己写代码上面,看到自己的代码跑通了会很开心。

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页