深度学习中的batch,iteration,epoch复习总结

这三个概念是在深度学习的优化中提到的,也就是BP。

batch的概念就是一次训练所用到的数据,当batchsize=1,就类似于梯度下降中的SGD,称为online learning;当batchsize小于整体训练集的数量时成为mini-batch learning;当batchsize等于整体训练集的数量时,称为batch learning。online learning的优点是下降很快,缺点是很难在最优点处收敛,通常会在接近最优点处来回震荡。batch learning的缺点是下降太慢。mini-batch learning结合了前两种,优化速度较快并且收敛比较稳定,所以一般采用mini batch learning。

这也就引出了batch,iteration,epoch三个概念,batch就是从全体训练数据中取出的一部分,用这个batch对模型做一次训练,那么用一个batch做一次训练叫做一次iteration,多次iteration才能用完训练集的全部数据,用完一次训练集的全部数据叫做一次epoch。

例如:一个训练集大小是10000,batchsize设为100,那么训练完整个训练集,iteration=100,epoch=1。对整个训练集训练10次,那么iteration=1000,epoch=10。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值