监控摄像头角度范围计算方法

监控摄像头角度范围计算方法

已知参数如下:

(1)图像传感器:1/2.7’’ 200万像素逐行扫描CMOS;

(2)焦距:3.3焦距:3.3mm~12mm;

(3)视角范围:96°~35°(16:9) 79.3°~27.2°(4:3)

主要测试安装环境如下:

半球摄像机安装高度为H=3m,走廊的宽度W为:2m;摄像机镜头的安装角度为0°(即镜头水平);监视器显示比例:4:3,摄像机模式设置为:4:3;主要监视目标W’H’=2m宽3米高的完整走廊范围。

用到的公式如下:

水平视场角:α=2arctan(w/2f)、

垂直视场角:β=2arctan(h/2f),

其中w为视场宽度,h为视场高度,f为镜头的焦距。

虽然通过计算而出来的视场角比实际视场小一点,但差别可以忽略。这里我们以计算的视场角来描述摄像机的监控范围。

1/2.7’'CMOS成像尺寸为:wh=5.27mm3.96mm。

于是按照公式进行计算可以得到:

焦距为3.3mm时:

水平视场角: α1=2arctan(5.27mm/2*3.3mm)=77.2°

垂直视场角: β1=2arctan(3.96mm/2*3.3mm)=61.9°

①垂直方向上,能看到完整走廊的最小距离(距离摄像机的水平距离)为: dvmin=H/tan(β1/2)=3000mm/tan(61.9°/2) =5000mm=5米;

② 水平方向上,能看到完整走廊的最小距离(距离摄像机的水平距离)为: dhmin=W/2tan(α1/2)=2000mm/2tan(77.2°/2)=1253mm=1.25米。

由于dvmin>dhmin,因此,焦距为3.3mm时,监控范围为距离摄像机监控方向5米以外的走廊区域。

焦距为12mm时:

水平视场角:α2=2arctan(5.27mm/2*12mm)=24.8°

垂直视场角:β2:=2arctan(3.96mm/2*12mm)=18.7°

①垂直方向上,能看到完整走廊的最小距离(距离摄像机的水平距离)为: dvmin’=H/tan(β2/2)=3000mm/tan(18.7°/2)=18220mm≈18米;

②水平方向上,能看到完整走廊的最小距离(距离摄像机的水平距离)为: dhmin’=W/2tan(α2/2)=2000mm/2tan(24.8°/2)=4548mm≈4.5米;

由于dvmin’<dhmin’,因此,焦距为12mm时,监控范围为距离摄像机监控方向18米以外的走廊区域。

也就说,如果摄像机水平安装的话,一半图像会是天花板。所以一般摄像头都不会水平安装,而是镜头向下便宜,偏移水平角度。

那么如果下倾角为其垂直视角一般的情况下的监控范围,这是在摄像机安装高度及监控对象高度相同的情况下最大的下倾角。

(1)焦距为3.3mm时:

①垂直方向上,能看到完整走廊的最小距离(距离摄像机的水平距离)为: dvmin=H/tanβ1=3000mm/tan61.9°≈1.6米

②水平方向上,视场角可近似认为不变,dhmin仍为1.25米。

由于dvmin>dhmin,焦距为3.3mm时,监控范围为距离摄像机监控方向1.6米以外的走廊区域。

(2)焦距为12mm时:

①垂直方向上,能看到完整走廊的最小距离(距离摄像机的水平距离)为: dvmin=H/tanβ2=3000mm/tan18.7°≈8.86米

②水平方向上,视场角也可认为近似不变,dhmin’仍为4.5米;

由于dvmin’>dhmin’,焦距为12mm时,监控范围为距离摄像机监控方向8.86米以外的走廊区域。

  • 0
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: CNN模型可以用于识别摄像头图像。卷积神经网络(Convolutional Neural Network,CNN)是一种专门用于处理图像和视频数据的深度学习模型。通过对图像进行卷积、池化等一系列处理,CNN模型可以提取出图像中的特征,从而实现图像的分类、识别等任务。因此,可以使用CNN模型来对摄像头拍摄的图像进行识别,例如人脸识别、车牌识别等。 ### 回答2: CNN模型,即卷积神经网络,是一种深度学习模型,广泛应用于图像分类和识别任务中。 对于摄像头图像的识别,CNN模型可以通过以下步骤进行: 1. 数据收集与预处理:首先,需要收集并标注大量摄像头图像的训练数据。这些图像可以包括不同角度、不同光照条件下的图片。然后,对这些图像进行预处理,如缩放、裁剪、增强等操作,以便适应CNN模型的输入要求。 2. 模型构建与训练:接下来,可以搭建CNN模型,通常包括卷积层、池化层和全连接层等。卷积层可以提取图像的特征,池化层可以降低特征的维度,全连接层可以将特征与类别进行关联。然后,使用收集到的训练数据对CNN模型进行训练,通过迭代优化模型参数,使其能够准确识别摄像头图像。 3. 模型评估与优化:在训练完成后,需要使用测试数据集对模型进行评估,计算出模型的准确率、召回率等指标。如果模型表现不佳,可以通过调整网络结构、学习率、批次大小等超参数,或增加更多的训练数据来进一步优化模型。 4. 部署与应用:当模型训练达到满意的准确率后,可以将其部署到摄像头设备上。摄像头捕获到的图像可以输入到CNN模型中,模型将输出预测的类别或特征信息。根据摄像头的应用场景,可以根据识别结果进行后续操作,例如安全监控、人脸识别等。 总结而言,CNN模型可以用于识别摄像头图像。通过搭建模型、训练优化,并最终部署到摄像头设备上,可以实现对摄像头图像的自动识别和分类。 ### 回答3: CNN(卷积神经网络)是一种深度学习模型,可以用于图像识别任务。对于摄像头图像识别,可以通过以下步骤进行: 首先,我们需要收集大量的摄像头图像作为训练样本。这些图像包含摄像头拍摄的不同场景和不同目标物体。通过标注这些图像,分为不同的类别,比如人、车辆、动物等。 接下来,我们使用这些图像作为训练数据来训练CNN模型。训练时,CNN模型将会学习到不同类别的特征。卷积层将会对图像进行卷积操作,提取出图像的局部特征,然后通过池化层进行降维处理。最后,通过全连接层将提取出的特征进行分类。 训练完成后,我们可以使用训练好的CNN模型来对新的摄像头图像进行识别。首先,我们将待识别的图像输入到CNN模型中,模型会对图像进行特征提取。然后,通过softmax函数进行分类,确定图像属于哪个类别。 为了提高识别准确率,我们可以采用一些优化方法。比如,数据增强技术可以通过对图像进行旋转、平移、缩放等操作,增加样本数量,提高模型的泛化能力。另外,我们还可以用预训练的CNN模型,如VGG、ResNet等,进行迁移学习,提高模型的识别能力。 总之,通过使用CNN模型对摄像头图像进行识别,我们可以实现自动识别拍摄场景中的不同目标物体,为许多应用领域带来便利,如智能监控、智能驾驶等。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值