UWB通讯技术

UWB(Ultra-Wideband)案例分析:基于UWB的室内定位系统


案例背景

超宽带(UWB)是一种短距离无线通信技术,具有高精度定位能力,常用于室内定位、资产跟踪和导航。本案例实现一个简单的 UWB 室内定位系统,使用基站与移动标签(Tag)通信计算位置信息。


需求说明

  1. 定位精度:厘米级。
  2. 标签设备:通过 UWB 与基站通信,并广播自己的位置请求。
  3. 基站:多个 UWB 基站参与定位,通过三角定位算法计算标签的位置。
  4. 平台:基于 Decawave DWM1000 模块,使用 STM32 进行开发。

实现思路

  1. 使用 DWM1000 模块搭建 UWB 通信。
  2. 移动标签发送测距请求,基站之间协同完成时间差测距(TDoA)。
  3. 基站将测距数据上传到 PC,计算标签的二维/三维位置。

系统架构

  • 标签(Tag):负责广播测距请求,并接收定位结果。
  • 基站(Anchor)
    • 与标签通信,完成时间同步和测距。
    • 数据通过 UART 或网络发送到定位引擎(如 PC)。
  • 定位引擎:基于 TDoA 算法计算标签位置。

代码实现

硬件配置
  • 模块:Decawave DWM1000。
  • 微控制器:STM32F103。
  • 开发环境:Keil 或 PlatformIO。

标签(Tag)代码
#include "dw1000.h"
#include "stm32f1xx_hal.h"

#define TAG_ID 1
uint8_t tx_buffer[16]; // 发送缓冲区

void setup() {
    // 初始化 DWM1000 模块
    dw1000_init();
    // 配置为标签角色
    dw1000_set_role(DW_ROLE_TAG);
}

void loop() {
    // 构建测距请求数据包
    tx_buffer[0] = TAG_ID; // 标签 ID
    tx_buffer[1] = 0x01;   // 请求类型
    // 发送广播测距请求
    if (dw1000_send(tx_buffer, sizeof(tx_buffer)) == DW_SUCCESS) {
        printf("测距请求已发送\n");
    } else {
        printf("测距请求发送失败\n");
    }
    // 每 1 秒发送一次
    HAL_Delay(1000);
}

基站(Anchor)代码
#include "dw1000.h"
#include "stm32f1xx_hal.h"

#define ANCHOR_ID 1
uint8_t rx_buffer[16]; // 接收缓冲区
uint8_t tx_buffer[16]; // 回复缓冲区

void setup() {
    // 初始化 DWM1000 模块
    dw1000_init();
    // 配置为基站角色
    dw1000_set_role(DW_ROLE_ANCHOR);
}

void loop() {
    // 等待接收数据包
    if (dw1000_receive(rx_buffer, sizeof(rx_buffer)) == DW_SUCCESS) {
        printf("接收到数据包\n");

        // 如果是测距请求
        if (rx_buffer[1] == 0x01) {
            uint32_t timestamp = dw1000_get_rx_timestamp(); // 获取接收时间戳
            printf("接收时间戳: %lu\n", timestamp);

            // 回复测距数据
            tx_buffer[0] = ANCHOR_ID;  // 基站 ID
            memcpy(&tx_buffer[1], &timestamp, sizeof(timestamp));
            dw1000_send(tx_buffer, sizeof(tx_buffer));
            printf("测距数据已发送\n");
        }
    }
}

定位引擎(PC 端 Python 实现)

PC 上运行定位算法,计算标签的实际位置。

import numpy as np

# 基站位置 (x, y, z)
anchors = [
    (0, 0, 0),     # Anchor 1
    (5, 0, 0),     # Anchor 2
    (0, 5, 0),     # Anchor 3
    (5, 5, 0)      # Anchor 4
]

# 从基站接收到的时间差
time_differences = [2.45e-9, 1.23e-9, -3.67e-9, 0.0]  # 单位:秒

# UWB 信号传播速度
speed_of_light = 299792458  # m/s

def calculate_position(anchors, time_differences):
    """使用TDoA算法计算标签位置"""
    distances = [td * speed_of_light for td in time_differences]

    # 构造矩阵 A 和 b
    A = []
    b = []
    for i in range(1, len(anchors)):
        x1, y1, z1 = anchors[0]
        x2, y2, z2 = anchors[i]
        d1, d2 = distances[0], distances[i]
        
        A.append([2*(x2-x1), 2*(y2-y1), 2*(z2-z1)])
        b.append(d1**2 - d2**2 + x2**2 - x1**2 + y2**2 - y1**2 + z2**2 - z1**2)

    A = np.array(A)
    b = np.array(b)
    
    # 计算位置
    position = np.linalg.lstsq(A, b, rcond=None)[0]
    return position

# 计算标签位置
position = calculate_position(anchors, time_differences)
print(f"标签位置: x={position[0]:.2f}, y={position[1]:.2f}, z={position[2]:.2f}")

系统运行

  1. 标签
    • 每秒发送测距请求。
  2. 基站
    • 接收测距请求,记录时间戳并返回数据。
  3. PC 端
    • 从基站接收时间差数据,使用 TDoA 算法计算并显示标签位置。

扩展功能

  1. 三维定位
    • 增加更多基站,实现三维空间定位。
  2. 标签功耗优化
    • 实现低功耗模式,延长电池寿命。
  3. 定位引擎优化
    • 使用 Kalman 滤波平滑定位结果,提高精度。

总结

本案例展示了基于 UWB 的简单室内定位系统的实现,包括标签、基站和定位引擎部分。通过使用 Decawave 的 DWM1000 模块和 TDoA 定位算法,可以实现高精度的室内定位,为资产跟踪、机器人导航等场景提供解决方案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贺公子之数据科学与艺术

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值