UWB(Ultra-Wideband)案例分析:基于UWB的室内定位系统
案例背景
超宽带(UWB)是一种短距离无线通信技术,具有高精度定位能力,常用于室内定位、资产跟踪和导航。本案例实现一个简单的 UWB 室内定位系统,使用基站与移动标签(Tag)通信计算位置信息。
需求说明
- 定位精度:厘米级。
- 标签设备:通过 UWB 与基站通信,并广播自己的位置请求。
- 基站:多个 UWB 基站参与定位,通过三角定位算法计算标签的位置。
- 平台:基于 Decawave DWM1000 模块,使用 STM32 进行开发。
实现思路
- 使用 DWM1000 模块搭建 UWB 通信。
- 移动标签发送测距请求,基站之间协同完成时间差测距(TDoA)。
- 基站将测距数据上传到 PC,计算标签的二维/三维位置。
系统架构
- 标签(Tag):负责广播测距请求,并接收定位结果。
- 基站(Anchor):
- 与标签通信,完成时间同步和测距。
- 数据通过 UART 或网络发送到定位引擎(如 PC)。
- 定位引擎:基于 TDoA 算法计算标签位置。
代码实现
硬件配置
- 模块:Decawave DWM1000。
- 微控制器:STM32F103。
- 开发环境:Keil 或 PlatformIO。
标签(Tag)代码
#include "dw1000.h"
#include "stm32f1xx_hal.h"
#define TAG_ID 1
uint8_t tx_buffer[16]; // 发送缓冲区
void setup() {
// 初始化 DWM1000 模块
dw1000_init();
// 配置为标签角色
dw1000_set_role(DW_ROLE_TAG);
}
void loop() {
// 构建测距请求数据包
tx_buffer[0] = TAG_ID; // 标签 ID
tx_buffer[1] = 0x01; // 请求类型
// 发送广播测距请求
if (dw1000_send(tx_buffer, sizeof(tx_buffer)) == DW_SUCCESS) {
printf("测距请求已发送\n");
} else {
printf("测距请求发送失败\n");
}
// 每 1 秒发送一次
HAL_Delay(1000);
}
基站(Anchor)代码
#include "dw1000.h"
#include "stm32f1xx_hal.h"
#define ANCHOR_ID 1
uint8_t rx_buffer[16]; // 接收缓冲区
uint8_t tx_buffer[16]; // 回复缓冲区
void setup() {
// 初始化 DWM1000 模块
dw1000_init();
// 配置为基站角色
dw1000_set_role(DW_ROLE_ANCHOR);
}
void loop() {
// 等待接收数据包
if (dw1000_receive(rx_buffer, sizeof(rx_buffer)) == DW_SUCCESS) {
printf("接收到数据包\n");
// 如果是测距请求
if (rx_buffer[1] == 0x01) {
uint32_t timestamp = dw1000_get_rx_timestamp(); // 获取接收时间戳
printf("接收时间戳: %lu\n", timestamp);
// 回复测距数据
tx_buffer[0] = ANCHOR_ID; // 基站 ID
memcpy(&tx_buffer[1], ×tamp, sizeof(timestamp));
dw1000_send(tx_buffer, sizeof(tx_buffer));
printf("测距数据已发送\n");
}
}
}
定位引擎(PC 端 Python 实现)
PC 上运行定位算法,计算标签的实际位置。
import numpy as np
# 基站位置 (x, y, z)
anchors = [
(0, 0, 0), # Anchor 1
(5, 0, 0), # Anchor 2
(0, 5, 0), # Anchor 3
(5, 5, 0) # Anchor 4
]
# 从基站接收到的时间差
time_differences = [2.45e-9, 1.23e-9, -3.67e-9, 0.0] # 单位:秒
# UWB 信号传播速度
speed_of_light = 299792458 # m/s
def calculate_position(anchors, time_differences):
"""使用TDoA算法计算标签位置"""
distances = [td * speed_of_light for td in time_differences]
# 构造矩阵 A 和 b
A = []
b = []
for i in range(1, len(anchors)):
x1, y1, z1 = anchors[0]
x2, y2, z2 = anchors[i]
d1, d2 = distances[0], distances[i]
A.append([2*(x2-x1), 2*(y2-y1), 2*(z2-z1)])
b.append(d1**2 - d2**2 + x2**2 - x1**2 + y2**2 - y1**2 + z2**2 - z1**2)
A = np.array(A)
b = np.array(b)
# 计算位置
position = np.linalg.lstsq(A, b, rcond=None)[0]
return position
# 计算标签位置
position = calculate_position(anchors, time_differences)
print(f"标签位置: x={position[0]:.2f}, y={position[1]:.2f}, z={position[2]:.2f}")
系统运行
- 标签:
- 每秒发送测距请求。
- 基站:
- 接收测距请求,记录时间戳并返回数据。
- PC 端:
- 从基站接收时间差数据,使用 TDoA 算法计算并显示标签位置。
扩展功能
- 三维定位:
- 增加更多基站,实现三维空间定位。
- 标签功耗优化:
- 实现低功耗模式,延长电池寿命。
- 定位引擎优化:
- 使用 Kalman 滤波平滑定位结果,提高精度。
总结
本案例展示了基于 UWB 的简单室内定位系统的实现,包括标签、基站和定位引擎部分。通过使用 Decawave 的 DWM1000 模块和 TDoA 定位算法,可以实现高精度的室内定位,为资产跟踪、机器人导航等场景提供解决方案。