python从零开始学习深度学习01——神经网络反向传播的链式求导

自我介绍

最懂保险的算法工程师,致力于保险理念的推广,让每个程序员在35岁时都能够免除后顾之忧。通过构建保险组合,避免中年因病致穷,苦攒多年积蓄全部花费在医疗上,因此返贫。有兴趣的朋友后台私信加V:Archangle3_14,加不上可私信,常驻深圳,可约面谈。

交叉熵损失函数+sigmoid激活函数的链式求导

如果损失函数是交叉熵损失(entropy loss),通常用于分类任务中评估模型的输出与实际标签之间的差异。假设我们处理的是一个二分类问题,使用的输出层激活函数是sigmoid函数,那么交叉熵损失函数可以表达为:

交叉熵损失函数

对于一个给定的样本,交叉熵损失定义为:
L = − ( y log ⁡ ( y ^ ) + ( 1 − y ) log ⁡ ( 1 − y ^ ) ) L = -\left(y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})\right) L=(ylog(y^)+(1y)log(1y^))
其中 y y y 是实际的标签, y ^ \hat{y} y^ 是模型的预测概率,这里 y ^ = σ ( z ) \hat{y} = \sigma(\mathbf{z}) y^=σ(z),且 z \mathbf{z} z 是隐藏层通过激活函数之前的线性输出。

链式求导

为了应用链式求导,我们首先计算 ∂ L ∂ y ^ \frac{\partial L}{\partial \hat{y}} y^L
∂ L ∂ y ^ = − ( y y ^ − 1 − y 1 − y ^ ) \frac{\partial L}{\partial \hat{y}} = -\left(\frac{y}{\hat{y}} - \frac{1 - y}{1 - \hat{y}}\right) y^L=(y^y1y^1y)

然后,考虑 y ^ = σ ( z ) \hat{y} = \sigma(\mathbf{z}) y^=σ(z),其导数 σ ′ ( z ) = σ ( z ) ( 1 − σ ( z ) ) \sigma'(z) = \sigma(z)(1 - \sigma(z)) σ(z)=σ(z)(1σ(z)),所以我们有:
∂ y ^ ∂ z = σ ( z ) ( 1 − σ ( z ) ) = y ^ ( 1 − y ^ ) \frac{\partial \hat{y}}{\partial \mathbf{z}} = \sigma(\mathbf{z})(1 - \sigma(\mathbf{z})) = \hat{y}(1 - \hat{y}) zy^=σ(z)(1σ(z))=y^(1y^)

现在,利用链式法则计算 ∂ L ∂ z \frac{\partial L}{\partial \mathbf{z}} zL
∂ L ∂ z = ∂ L ∂ y ^ ⋅ ∂ y ^ ∂ z = ( − y y ^ + 1 − y 1 − y ^ ) ⋅ y ^ ( 1 − y ^ ) \frac{\partial L}{\partial \mathbf{z}} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial \mathbf{z}} = \left(-\frac{y}{\hat{y}} + \frac{1 - y}{1 - \hat{y}}\right) \cdot \hat{y}(1 - \hat{y}) zL=y^Lzy^=(y^y+1y^1y)y^(1y^)
简化上式,我们得到:
∂ L ∂ z = − y ( 1 − y ^ ) + ( 1 − y ) y ^ = y ^ − y \frac{\partial L}{\partial \mathbf{z}} = -y(1 - \hat{y}) + (1 - y)\hat{y} = \hat{y} - y zL=y(1y^)+(1y)y^=y^y

最终,根据 z = W x + b \mathbf{z} = \mathbf{Wx} + \mathbf{b} z=Wx+b,我们得到权重 W \mathbf{W} W 和偏置 b \mathbf{b} b 的梯度:
∂ L ∂ W = ( y ^ − y ) x T \frac{\partial L}{\partial \mathbf{W}} = (\hat{y} - y) \mathbf{x}^T WL=(y^y)xT
∂ L ∂ b = y ^ − y \frac{\partial L}{\partial \mathbf{b}} = \hat{y} - y bL=y^y

总结

这种方式提供了更新权重 W \mathbf{W} W 和偏置 b \mathbf{b} b 的直接方法,适用于通过梯度下降方法优化二分类问题的神经网络模型。这种推导清楚地显示了从损失函数到模型权重的依赖关系,也是反向传播算法中的关键步骤。

  • 20
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值