【挤压-激励-网络】Squeeze-Excitation-Networks

目录

标题:Squeeze-and-Excitation Networks

1.介绍

2.SE模块

(1)Squeeze:全局信息嵌入

(2)Excitation:自适应重新校正

(3)Exemplars:SE-Inception and SE-ResNet模型

3.模型和计算复杂度

4.实验

ImageNet分类:

场景分类: 

分析和讨论减少比率 

5.结论


类型:研究型;

内容:SE模块

GitHub:https://githorb.com/hujie-frank/senet

标题:Squeeze-and-Excitation Networks

441375b9e4184cd793702070319de312.png

摘要:

Convolutional neural networks are built upon the convolution operation, which extracts informative features by fusing spatial and channel-wise information together within local receptive fields. In order to boost the representational power of a network, several recent approaches have shown the benefit of enhancing spatial encoding. In this work, we focus on the channel relationship and propose a novel architectural unit, which we term the “Squeeze- and-Excitation” (SE) block, that adaptively recalibrates channel-wise feature responses by explicitly modelling in- terdependencies between channels. We demonstrate that by stacking these blocks together, we can construct SENet architectures that generalise extremely well across challenging datasets. Crucially, we find that SE blocks produce significant performance improvements for existing state-of- the-art deep architectures at minimal additional computational cost. SENets formed the foundation of our ILSVRC 2017 classification submission which won first place and significantly reduced the top-5 error to 2.251%, achieving a ∼25% relative improvement over the winning en- try of 2016. Code and models are available at https: //github.com/hujie-frank/SENet.


卷积神经网络是建立在卷积运算基础之上的,它将空间和通道维度信息在局部感受野内融合起来提取信息特征。为了提高网络的表征能力,最近的几种方法已经表明了增强空间编码的好处。在本次的研究中,我们聚焦于通道关系并提出了一个新颖的框架单元,我们称之为“激励-挤压”(SE)模块,依据通道之间显化模型的相互依赖关系适应性地重新矫正通道维度特征响应。我们证明了通过将这些模块堆叠到一起就可以构建SE网络架构,这个架构在通过挑战性的数据集泛化性极佳。关键是,我们发现SE模块在现存的最先进的深度架构中,花费很小的额外计算量就可以达到显著的提升效果。SENets是我们ILSVRC2017分类提交的基础,以排名第一的位置显著地将前五的错误减少至2.251%,相较于2016年获得的提升了25%。


1.介绍

SE构建块的基本结构如下图所示:

对于任意给定的变换,我们就可以构造一个SE模块来重新校准,特征U首先通过挤压Squeeze操作,跨越空间维度W*H聚合特征响应来产生通道描述符。之后是激励Excitation操作,通过依赖性的自门机制为每个通道学习特征采样激活,控制每个通道的激励。然后特征映射U重新加权生成SE块输出,此输出可以直接输入到后面的层中。

2.SE模块

(1)Squeeze:全局信息嵌入

问题:每个学习到的滤波器都对局部感受野进行操作,变换U的每个单元都无法利用该区域之外的上下文信息。在网络较低的层次上其感受野的尺寸很小。

解决方案:将全局空间信息压缩成一个通道描述符。通过使用全局平均池化生成通道统计实现的。形式上,统计z ∈ RC是通过空间维度W*H上收缩U生成的。

讨论:转换输出U可以被解释为局部描述子的集合,这些描述子的统计信息对于整个图像来说是有表现力的。我们选择最简单的全局平均池化,同时也可以采用更加复杂的汇聚策略。

(2)Excitation:自适应重新校正

问题:为了利用挤压操作中得到的信息,我们第二个操作是全面捕获通道依赖性。为了这个目标,这一步必须符合两个标注:第一,它必须是灵活的;第二,它必须学习一个非互斥的关系。

解决方案:采用一个简单的门机制,并使用sigmod激活:

为了限制模型复杂度和辅助泛化,通过在非线性周围形成两个全连接FC层的瓶颈来参数化门机制,即:降维层参数W1,块的最终输出通过重新调节带有激活的变换输出U得到:

讨论:激活作为适应特定输入描述符Z的通道权重,在这方面,SE块本质上引入了以输入为条件的动态特征,有助于提高特征辨别力。

(3)Exemplars:SE-Inception and SE-ResNet模型

SE块的灵活性意味着它可以直接应用于标准卷积之外的变换。我们通过SE块集成到两个流行的网络架构系列Inception和ResNet中来开发SENets。通过将变换Ftr看作一个整体的Inception模块,为其构建SE模块。

3.模型和计算复杂度

4.实验

ImageNet分类:

SE-ResNet-50实现了单裁剪图像6.62%的top-5验证错误率,超过了ResNet-50(7.48%)0.86%,接近更深的ResNet-101网络,且只有ResNet-101一半的计算开销。图4分别描述了训练和验证曲线。

场景分类: 

分析和讨论减少比率 

 

5.结论

在本文中提出的SENets,是一种新颖的架构单元,主要是通过网络能够执行动态通道特征重新校准来提高网络的表征能力。大量的实验证明它是有效的。此外,此模块也可用于其他相关领域的研究,比如应用在压缩的网络修剪中。 

原文链接:深度学习论文阅读图像分类篇(六):SENet《Squeeze-and-Excitation Networks》-阿里云开发者社区

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值