基于退火算法的启发式下料问题(C++)

本文介绍了如何使用模拟退火算法解决下料问题,详细讲解了算法步骤、所需条件以及C++代码实现。通过2-opt邻域构造和启发式计算余料率方法,探讨了算法在下料优化中的应用。
摘要由CSDN通过智能技术生成


刚刚做完最优控制的大作业,总结下所用的模拟退火算法,谈谈自己的理解。

1. 问题描述

问题就是典型的下料问题。把板材切割成要求数量和规格的产品。其中,输入为板材的大小、产品的数量和大小,输出为余料率、产品的坐标。

具体算法概述参见百度百科吧模拟退火

2. 自己的理解

退火过程中的每个金属分子有能量和状态两种属性,将能量最低时的状态记做r,能量和状态的概率有对应关系,能量越高,分子状态为r的概率越低,反之在最低温度时,r状态的概率趋近于1。将组合优化问题看做金属,解看做状态,那么最优解就是能量最低的状态,同时也定义一个费用函数来表示能量,通常都用T乘某个略小于1的系数。当T值比较高时,状态变化比较活跃,当T值达到最低时,达到最优解的概率趋近于1。

第一次接触模拟退火算法,表示这的确是一个不错的方法。对于求最优解的问题,的确能节约不少计算时间。模拟退火算法的精髓就在于其将收缩扩张动态结合在一起,得到最优解是收缩的过程,而为了避免陷入局部最优解,又得有扩张的表现。再次印证了我一直以来坚信的一个想法,大自然演化的很巧妙,如果有什么无法解决的问题,或者想有什么创新,就到大自然中去找吧,哈哈,说多了。下面具体谈谈模拟退火。

3. 算法详细讲解

3.1 算法步骤

  1. 任选一初始解 x 0 x_0 x0。 给定初始温度 T m a x T_{max} Tmax;
  2. 若在该温度达到内循环停止条件,转第3步,否则,从解邻域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值