一种极谱型电极动态法测量kLa的模型

1、模型依赖基本式

本方法、模型主要围绕反应器中的溶氧变化进行展开:

动态法求解的基本公式来源于双模理论,即

(1)

由这个公式揭示的一个现象就是,随着氧气进一步的溶解至料液的过程中,传质速率()将会越来越小。

如果我们对公式(1)进行积分,以试图获取 料液溶氧浓度 C 随 t 的变化函数,则有:

由此可获得完美符合双膜理论的溶氧公式:

a

这是本模型的关键式。

2、模型构架思想

经查阅文献,目前常用的溶氧电极可分为 克拉克极谱型电极、荧光法电极,原电池不作讨论。本文采用Inpro6050为 前者,极谱电极,相对于后者有着更长的响应时间,我们后来自己也证明了其不可忽视性,只要存在响应时间(荧光法可达到10~20s左右),都会存在偏差。

且所测量的越大,要想直接通过读数来获得更接近真实值的读数,则要求更短的响应时间,也意味着,当 > 0.2 s-1时,有些荧光法电极也会出现较大的偏差,但对于更为常见的kLa及生产需求,荧光法已经十分完美,而极谱电极则都有着不可忽视的延迟。

经过资料查询知道,极谱电极存在着溶氧膜这一组件,而荧光法则是荧光寿命的等待测量;极谱电极需要通过料液向内部电解液进行氧传质,再通过电极氧化反应与电信号放大获取读数的,如下图:

认为电子传递、化学反应是极快可忽略的,极谱电极的响应时间主要是由二次传质引起的,这点后面所述的追加实验可以起到一定证明(湍流程度影响了响应时间,而湍流也是影响传质的)。

因此我们的模型主要考虑到如下因素:

  1. 通气到料液的一次氧传质
  2. 料液溶氧后对电极电解液的二次氧传质
  3. 湍流影响传质
  4. 温度影响传质

为更少工作量来校正数据,控制了温度在30℃,也就是我们先前氧传质系数测量的温度,规避了因素4。

因素1即是我们要测得,隐藏在DO示数背后的真实;而因素2,则是类比到电极,将双膜理论应用于电极溶氧膜的,表示探头probe的,因此认为图中②传质过程,也有公式:

可以注意到,其饱和氧浓度被换做了料液氧浓度C,而C与原始C*状况最大的不同是,C是随时间变化的,而C*不是(定值),这里因为电解液、料液在一定温度、压强下实质上的C*是相同的,在电解液无法接触C*传质的情况下,就只能由料液的C来作C*了,即在料液C增加前,电解液内的溶氧Cp最大也只能增至接近C,这是与原公式不同意义的部分。

带入C的公式(a),则有:

b

式(b)再积分则存在难度了,因项  的存在,无法像式(a)直接获得一个函数式将Cp表示。

但这并不意味着不可解,类比目前部分求解器的思路,可以采用试值法进行收敛求解(由试值结果确定改变方向,在一步步迭代求解的过程最后向正确的解收敛)。便采用了如此方案进行求解。

之后则是因素3,湍流对传质的影响,目前仍未搜到相关较好的表示公式,因此我们采用间隔50rpm来进行 同一个 Inpro6050 溶氧电极的  测量,得到拟合公式,来表示湍流对其传质的影响,我们进行的试验结果也说明不考虑湍流影响的 电极校正方案,是不够合理的,而电极由0% DO至100%DO突变的响应时间,也会受湍流影响(随着湍流程度增大,也慢慢增大,但  关于 湍流程度 拟合曲线斜率慢慢变小)。

因素4通过控制变量跳过了考虑,简化了一些过程。

于是,二次传质由如下迭代基本公式:

其中,是第n+1时间步长的 电极响应延迟DO读数,则对应 前一(第n)个时间步长的 实际料液DO、电极响应延迟DO读数,∆t则为设置的时间步长,即两次模拟求解的时间间隔。(详情理解见下图)

现在,模型求解的思路大致明了:

注意,随着测量转速的提升,料液的湍流、温度(可控值规避)会影响kLa_p,需要注意调整,测量对应值。可以看到本模型曲线很符合一些文章中示意的真实DO与延迟响应DO的曲线关系。

对模型的一些讨论:虽然也是应用于动态法来测量kLa,但其实已经把

公式的贡献大大减少了,不再使用上式中线性拟合获取斜率的方式求解,而是直接比较仿真DO延迟线与实验数据DO的相似度,其实已经没有了上公式的处理。而上公式的ln(1-DO)使得数据的DO的读数误差的影响被放大化,经过线性拟合又会损失精度(经实验,同一组数据,读数间隔时长1s,仅仅取不同时长DO以上式求解,如1s、5s、10s,其便会受到至少1e-3数量级的影响),所以本模型的另一特点是最完善的利用、保留了实际实验的DO读数信息,同时考虑了响应时间,并有着一定的抗误读性(或者可能说是鲁棒性),求解结果理论上损失可能更少

3、实验设计

获得溶氧电极的至关重要,这个过程我们首先要确保:只有一次传质,不再有响应时间导致的不准确性。

实验装置如图:

最后,我们得到了关于转速N即雷诺数Re的关系图:

以下是推测的曲线形式(震荡上升后,最终开始围绕一确定值微幅震荡):

以上推测有待商榷,但对于校正而言我们只考虑拟合值,不去考虑其背后的关系究竟是怎样的,湍流的研究也是非常有难度的,因此也表明,同一个极谱电极的响应时间在料液的不同理化状况(温度、湍流等)下响应时间并非定值。

然而数据分布还是较为刁钻的,尝试了Excel及matlab自带的拟合公式,都不能很好的进行拟合,寻找新的拟合公式也是较难的,因此我们对原数据以Re 在 10125和13500处为分界点进行了数据集分区多拟合,因为Excel给出的系数精度不够,多项式拟合在项数过多时,系数的微小差别就会影响整个曲线,所以这里还是使用读图法更优(精密的数学程序拟合获取系数是可行的,如matlab等):

自此,认为已经较好的收集到了常见大部分Re雷诺数区间的值,校正工作可以开始(这一步也是对双膜理论应用于水中探头在湍流传质的补救校正)。

                                                        

4、模型验证

本模型就转速、通气对kLa的定性分析来看,求解结果都符合转速、通风大的工艺求解kLa更大,且对应开始通气至达到90%DO的用时t90,也均是kLa大的更快,定性来说未出现不符合理论的情况,并且t90关于kLa的模型求解结果,试着做了曲线如下图:

上图kLa单位是h-1,针对杨 文章的数据:

杨使用的是2L罐,以本模型以本文《生物反应器模拟放大模型的构建及研究》中1.5L类比其中Koizumi及Non-calibration graphic等模型效果,装料1L,800rpm通气量0.3VVM,本模型求解值为205 h-1、就两者0.2VVM的差别影响来说,其数据规律还是较为符合的。

500rpm通气量0.3VVM求解90h-1,其中只有600 rpm数据,差异为100 rpm、0.3VVM,导致氧传质系数的70~100 h-1的差值,也符合经验估计。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值