处理Stanford cars数据集用于目标检测训练

本文介绍了如何处理Stanford Cars数据集,包括提取数据类型、创建XML和TXT文件,以及调整YOLO训练配置进行目标检测。通过划分训练集和测试集,配置网络结构并启动训练过程。
摘要由CSDN通过智能技术生成
  1. 处理cars_annos.mat文件:

    • 提取去数据集的类型名称
    • 提取出序号, 图片名, 类别, 属于测试集还是训练集
    import scipy.io
    
    
    # 提取标签
    def process1():
        data = scipy.io.loadmat('./data/cars_annos.mat')
        class_names = data['class_names']
        f_class = open('label_map.txt1', 'w')
    
        num = 1
        for j in range(class_names.shape[1]):
            class_name = str(class_names[0, j][0]).replace(' ', '_')
            print(num, class_name)
            f_class.write(str(num) + ' ' + class_name + '\n')
            num = num + 1
        f_class.close()
    
    
    # 提取 序号, 图片名, 类别, 属于测试集还是训练集(0,1表示)
    def process2():
        import scipy.io
    
        data = scipy.io.loadmat('./data/cars_annos.mat')
        annotations = data['annotations']
        f_train = open('mat2txt.txt', 'w')
    
        num = 1
        for i in range(annotations.shape[1]):
            name = str(annotations[0, i][0])[2:-2]
            test = int(annotations[0, i][6])
            clas = int
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值