为什么用3*3卷积核代替7*7?

本文探讨了现代神经网络中3*3卷积核的应用,解释了如何用两个3*3卷积核代替5*5卷积核,不仅保持相同感受野,还通过增加网络层数和非线性表达能力,减少了参数数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

早期的神经网络采用较大的卷积核,如5*5,7*7,这样参数很多,层次少,表达能力弱。现在一般都使用3*3卷积核。

为什么可以用两个3*3卷积核可以代替5*5卷积核呢?因为它们的感受野相同。

这样做有什么好处呢?

1、增加网络层数,层之间可以加入激活函数,增加了网络的非线性表达能力。

2、参数更少,2个3*3的卷积核有18个参数,1个5*5的卷积核有25个参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值