早期的神经网络采用较大的卷积核,如5*5,7*7,这样参数很多,层次少,表达能力弱。现在一般都使用3*3卷积核。
为什么可以用两个3*3卷积核可以代替5*5卷积核呢?因为它们的感受野相同。
这样做有什么好处呢?
1、增加网络层数,层之间可以加入激活函数,增加了网络的非线性表达能力。
2、参数更少,2个3*3的卷积核有18个参数,1个5*5的卷积核有25个参数。
早期的神经网络采用较大的卷积核,如5*5,7*7,这样参数很多,层次少,表达能力弱。现在一般都使用3*3卷积核。
为什么可以用两个3*3卷积核可以代替5*5卷积核呢?因为它们的感受野相同。
这样做有什么好处呢?
1、增加网络层数,层之间可以加入激活函数,增加了网络的非线性表达能力。
2、参数更少,2个3*3的卷积核有18个参数,1个5*5的卷积核有25个参数。