关于一个7*7的卷积核可用3个3*3的卷积核代替的理解

本文探讨了VGGNet在卷积神经网络领域的三项关键改进:采用小尺寸卷积核替代大尺寸,利用maxpooling避免模糊化,及在全连接层应用dropout技术。这些创新减少了参数量,提升了识别精度,但同时也牺牲了一定的速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在看常见网络的结构,比如AlexNet(2012),VGG(2014),GoogleNet(2014),ResNet残差网络(2015)等等,其中VGG相比AlexNet做出的三个改进:

1)使用小的卷积核而不是大的(如选用三个3*3的卷积核而不是选一个7*7),减少参数量

2)使用了max pooling,避免了平均池化的模糊化效果

3)在全连接层使用dropout,随机丢弃一部分神经元

这三个创新的地方使得VGGnet的参数大大减少,提高了识别率,但是由于使用了较多的卷积操作以及使用了三层全连接层(全连接层会大大增加参数量),因此速度变得缓慢。

这里说一下关于一个7*7的卷积核可用3个3*3的卷积核代替的理解

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值