一个7×7的卷积核可以用三个3×3的卷积核替代,一个5×5的卷积核可以有两个3×3的卷积核替代

在这里插入图片描述
从图上我们可以看出,一个30×30的图像经过一个7×7(49个参数)的卷积核之后,输出的feature map的大小为24×24,与经过三个3×3卷积核(27个参数)之后的的输出是一致的。经过一个5×5的卷积核(25个参数)之后,输出的feature map的大小为26×26,与经过两个3×3卷积核(18个参数)之后的的输出是一致的。
可以很明显的看出,在输出相同大小的feature map的情况下,需要的参数大大的减小了。
同时后者可以有3个非线性操作,而前者只有1个非线性操作,这样使得后者对于特征的学习能力更强。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值