机器学习笔记16--pca主成分分析

什么时候使用pca:

第一种情况是 如果你想要访问隐藏的特征 而你认为这些特征可能显示在你的数据的图案中

第二种情况当然就是降维

         它可以帮助你可视化高维数据

         去噪

         在使用另一个算法前使用 PCA 进行预处理


如果你收到任何形状的数据 无论是何种形状,PCA 会仅通过转化和轮换发现从旧坐标系统获得的新坐标系统,它根据数据中心,将坐标系的中心移至数据的中心,以方差最大的方向为横轴,纵轴垂直于横轴。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值