程序设计思维与实践 Week6 限时大模拟 A - 掌握魔法の东东 II

从瑞神家打牌回来后,东东痛定思痛,决定苦练牌技,终成赌神!
东东有 A × B 张扑克牌。每张扑克牌有一个大小(整数,记为a,范围区间是 0 到 A - 1)和一个花色(整数,记为b,范围区间是 0 到 B - 1。
扑克牌是互异的,也就是独一无二的,也就是说没有两张牌大小和花色都相同。
“一手牌”的意思是你手里有5张不同的牌,这 5 张牌没有谁在前谁在后的顺序之分,它们可以形成一个牌型。 我们定义了 9 种牌型,如下是 9 种牌型的规则,我们用“低序号优先”来匹配牌型,即这“一手牌”从上到下满足的第一个牌型规则就是它的“牌型编号”(一个整数,属于1到9):
同花顺: 同时满足规则 5 和规则 4.
炸弹 : 5张牌其中有4张牌的大小相等.
三带二 : 5张牌其中有3张牌的大小相等,且另外2张牌的大小也相等.
同花 : 5张牌都是相同花色的.
顺子 : 5张牌的大小形如 x, x + 1, x + 2, x + 3, x + 4
三条: 5张牌其中有3张牌的大小相等.
两对: 5张牌其中有2张牌的大小相等,且另外3张牌中2张牌的大小相等.
一对: 5张牌其中有2张牌的大小相等.
要不起: 这手牌不满足上述的牌型中任意一个.
现在, 东东从A × B 张扑克牌中拿走了 2 张牌!分别是 (a1, b1) 和 (a2, b2). (其中a表示大小,b表示花色)
现在要从剩下的扑克牌中再随机拿出 3 张!组成一手牌!!
其实东东除了会打代码,他业余还是一个魔法师,现在他要预言他的未来的可能性,即他将拿到的“一手牌”的可能性,我们用一个“牌型编号(一个整数,属于1到9)”来表示这手牌的牌型,那么他的未来有 9 种可能,但每种可能的方案数不一样。
现在,东东的阿戈摩托之眼没了,你需要帮他算一算 9 种牌型中,每种牌型的方案数。
Input
第 1 行包含了整数 A 和 B (5 ≤ A ≤ 25, 1 ≤ B ≤ 4).
第 2 行包含了整数 a1, b1, a2, b2 (0 ≤ a1, a2 ≤ A - 1, 0 ≤ b1, b2 ≤ B - 1, (a1, b1) ≠ (a2, b2)).
Output
输出一行,这行有 9 个整数,每个整数代表了 9 种牌型的方案数(按牌型编号从小到大的顺序)
Examples
Input

5 2
1 0 3 1
Output
0 0 0 0 8 0 12 36 0
Input
25 4

0 0 24 3
Output
0 2 18 0 0 644 1656 36432 113344
解题思路:
采用暴力枚举的方法,依次取三张牌,与输入的两张牌构成五张牌,依次判断属于哪种情况。注意应该先判断情况二再判断其他牌大小相等的情况。

#include <bits/stdc++.h>
using namespace std;
int p[5],h[5],pnum[25],hnum[4];
int pan() 
{
	 memset(pnum,0,sizeof(pnum));
	 memset(hnum,0,sizeof(hnum));
	for (int i = 0; i < 5; i++) {
		pnum[p[i]]++;
		hnum[h[i]]++;
	}
		
	bool is4 = 0, is5 = 0;
	//check 4 5 --> 1
	for (int i = 0; i < 4; i++) {
		if (hnum[i] == 5) {
			is4 = 1;
			break;
		}
	}
	for (int i = 0; i < 21; i++) {
		if (pnum[i] == 1 && pnum[i + 1] == 1 && pnum[i + 2] == 1 && pnum[i + 3] == 1 && pnum[i + 4] == 1)
		{
			is5 = 1;
			break;
		}
	}
	if (is4 && is5) {
		return 1;
	}
	if (is4) {
		return 4;
	}
	if (is5) {
		return 5;
	}

	{
		bool is3 = 0, is2 = 0,is1=0;
		int count2 = 0;
		for (int i = 0; i < 25; i++) {
			if (pnum[i] == 3) {
				is3 = 1;
			}
			else if (pnum[i] == 2) {
				count2++;
				is2 = 1;
			}
			else if(pnum[i]==4)
			{
				is1=1;
			}
		}
		if(is1)   return 2;
		if (is3 && is2) {
			return 3;
		}
		if (is3) {
			return 6;
		}
		if (count2 == 2) {
			return 7;
		}
		if (count2 == 1) {
			return 8;
		}
	}

	return 9;
}

int main() {
	memset(p,0,sizeof(p));
	 memset(h,0,sizeof(h));
	int a, b, a1, b1, a2, b2;
	scanf("%d %d",&a,&b);
	scanf("%d %d %d %d",&a1,&b1,&a2,&b2);
	p[0] = a1; p[1] = a2; h[0] = b1; h[1] = b2;

	int result[10] = { 0 };
	int w1 = a1 * b + b1;
	int w2 = a2 * b + b2;
    
	for (int i = 0; i < a * b; i++) {
		if (i == w1 || i == w2) continue;
		p[2] = i / b;
		h[2] = i % b;
		for (int j = i + 1; j < a * b; j++) {
			if (j == w1 || j == w2) continue;
			p[3] = j / b;
			h[3] = j % b;
			for (int k = j + 1; k < a * b; k++) {
				if (k == w1 || k == w2) continue;
				p[4] = k / b;
				h[4] = k % b;
				result[pan()]++;
			}
		}
	}

	for (int i = 1; i <=9; i++) {
		printf("%d",result[i]);
		if(i!=9)   printf(" ");
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值