GEE开发之Modis_ET数据分析和获取


前言:主要介绍Modis下的ET数据的获取和下载(日数据、月数据、年数据的下载)。MOD16A2版本6蒸发蒸腾/潜热通量产品是一种以500米像素分辨率生产的8天复合产品。用于MOD16数据产品收集的算法基于Penman-Monteith方程的逻辑,该方程包括每日气象再分析数据的输入以及MODIS遥感数据产品,如植被特性动力学、反照率和土地覆盖。


1 ET(蒸散量)

土壤蒸发和植物蒸腾的总耗水量,植物群落蒸散量和CO2交换量的测定方法多种多样.该文以水分、CO2动态的区域性整合为目标,开创了一种新的、同时测定群落蒸散量和CO2交换量的方法–LI-6262 CO2/H2O分析仪接气室法.

  • 注意1:Modis下的ET数据属于红外遥感法获得。
  • 注意2:两个蒸散层(ET和PET)的像素值是综合期内所有8天的总和。
  • 注意3:两个潜热层(LE和PLE)的像素值是综合期内所有8天的平均值。
  • 注意4:每年的最后8天是一个5或6天的综合期,这取决于年份。
  • 官方介绍https://developers.google.cn/earth-engine/datasets/catalog/MODIS_006_MOD16A2#description

2 MOD16A2(500米/8天)

2.1 MOD16A2下的所有指数

MOD16A2主要有ET、PET、LE、PLE等指数。

var geometry = ee.FeatureCollection('users/www1573979951/luyixian');
Map.centerObject(geometry,6);
var dataset = ee.ImageCollection("MODIS/006/MOD16A2")
.filter(ee.Filter.date('2020-01-01', '2020-12-31'))
.filterBounds(geometry);
print(dataset);

在这里插入图片描述

2.2 ET影像获取和查看

var geometry = ee.FeatureCollection('users/www1573979951/luyixian');
Map.centerObject(geometry,6);
var dataset = ee.ImageCollection("MODIS/006/MOD16A2")
.filter(ee.Filter.date('2001-01-01', '2001-12-31'))
.filterBounds(geometry)
.select('ET');
print(dataset);
var colorizedVis = {min: 0.0,  max: 1.0,  palette: ['FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', '74A901', '66A000', '529400', '3E8601', '207401', '056201', '004C00', '023B01',  '012E01', '011D01', '011301']};
Map.addLayer(dataset.mean().clip(geometry), colorizedVis, 'ET');

在这里插入图片描述
在这里插入图片描述

3 ET日数据下载(以MOD16A2为例)

  • 注意:两个蒸散层(ET和PET)的像素值是综合期内所有8天的总和。
var geometry = ee.FeatureCollection('users/www1573979951/luyixian');
Map.centerObject(geometry,6);
var dataset = ee.ImageCollection("MODIS/006/MOD16A2")
.filter(ee.Filter.date('2020-01-01', '2020-12-31'))
.filterBounds(geometry)
.select('ET');

var colorizedVis = {min: 0.0,  max: 1.0,  palette: ['FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', '74A901', '66A000', '529400', '3E8601', '207401', '056201', '004C00', '023B01',  '012E01', '011D01', '011301']};

function exportImageCollection(imgCol) {
  var indexList = imgCol.reduceColumns(ee.Reducer.toList(), ["system:index"]).get("list");
  indexList.evaluate(function(indexs) {
    for (var i=0; i<indexs.length; i++) {
      var image = imgCol.filter(ee.Filter.eq("system:index", indexs[i])).first();
      image = image.clip(geometry).multiply(0.1);//数据扩大了10倍,可以查看官方文档说明
      Map.addLayer(image, colorizedVis, indexs[i]);//查看具体的遥感影像
      //tif数据下载
      Export.image.toDrive({
        image: image,
        description: 'modis_et_'+indexs[i],
        fileNamePrefix: 'modis_et_'+indexs[i],
        folder: 'Modis',
        region: geometry,
        //region: geometry.geometry().bounds(),//如果下载出错可以替换这个
        scale: 500,
        crs: "EPSG:4326",
        maxPixels: 1e13
      });
    }
  });
}
exportImageCollection(dataset);

在这里插入图片描述

4 ET月数据下载(以MOD16A2为例)

  • 注意:是sum()不是mean()
var geometry = ee.FeatureCollection('users/www1573979951/luyixian');
var dataset = ee.ImageCollection("MODIS/006/MOD16A2");
for(var i=2018;i<=2020;i++){
  for(var j=1;j<=12;j++){
    var data_collection = null;
    switch(j){
      case 1:
      case 3:
      case 5:
      case 7:
      case 8:
      case 10:
      case 12:
        data_collection = dataset.filterDate(i+'-'+j+'-01',i+'-'+j+'-31').select('ET');
        break;
      case 4:
      case 6:
      case 9:
      case 11:
        data_collection = dataset.filterDate(i+'-'+j+'-01',i+'-'+j+'-30').select('ET');
        break;
      case 2:
        data_collection = dataset.filterDate(i+'-'+j+'-01',i+'-'+j+'-28').select('ET');
        break;
    }
    var YR_collection = data_collection.sum().multiply(0.1).toDouble().clip(geometry);//数据扩大了10倍,可以查看官方文档说明
    Export.image.toDrive({
      image: YR_collection,
      description: i+'-'+j,
      fileNamePrefix: i+'-'+j,
      scale: 500,
      region: geometry,
      //region: geometry.geometry().bounds(),//如果下载出错可以替换这个
      crs: "EPSG:4326",//地理投影WGS1984
      maxPixels: 1e13,
      folder: 'Modis'
    })
  }
}

在这里插入图片描述

5 ET年数据下载(以MOD16A2为例)

  • 注意:是sum()不是mean()
var geometry = ee.FeatureCollection('users/www1573979951/luyixian');
var dataset = ee.ImageCollection("MODIS/006/MOD16A2");
for(var i=2018;i<=2020;i++){
  var data_collection = dataset.filterDate(i+'-01-01',i+'-12-31').select('ET');
  // print(data_collection)
  var YR_collection = data_collection.sum().multiply(0.1).toDouble().clip(geometry);//数据扩大了10倍,可以查看官方文档说明
  Export.image.toDrive({
    image: YR_collection,
    description: i,
    fileNamePrefix: i,
    scale: 500,
    region: geometry,
    //region: geometry.geometry().bounds(),//如果下载出错可以替换这个
    crs: "EPSG:4326",//地理投影WGS1984
    maxPixels: 1e13,
    folder: 'Modis'
  });
}

在这里插入图片描述

### 适用于蒸散发反演的 MODIS 数据类型 在蒸散发反演的研究中,MODIS 数据因其高时间分辨率全球覆盖的特点而被广泛应用于地表能量平衡计算以及相关模型输入参数的提取。以下是常用的 MODIS 数据类型及其用途: #### 1. 地表反射率 (MOD09GA/MYD09GA MOD09Q1/MYD09Q1) 这些产品提供了地表反射率数据,可用于估算植被指数(如 NDVI EVI),从而反映地表植被覆盖率的变化情况。NDVI 是许多蒸散发模型中的重要变量之一,能够间接表示植物生长状态水分需求状况[^1]。 #### 2. 土地表面温度 (MOD11A1/MYD11A1) 土地表面温度是 ETWatch 方法以及其他基于物理过程的地表蒸散模型的关键输入因子之一。通过使用分裂窗算法处理 MODIS 波段 31 波段 32 的亮度温度数据来获取更精确的土地表面温度值[^3]。 #### 3. 叶面积指数与FPAR (MOD15A2H/MOD15A2HGF) 叶面积指数(LAI)反映了单位地面面积上的叶片总面积大小;而 FPAR 表示光合有效辐射吸收比例。两者共同决定了冠层结构特征对于太阳辐射拦截效率的影响程度,在 Penman-Monteith 方程中有直接体现作用[^2]。 #### 4. 蒸汽压亏缺 (MOD07_L2 或其他再分析资料补充) 虽然标准 MODIS 数据集中并不包含大气湿度信息,但是可以通过结合气象站点观测或者再分析数据集得到近似估计值作为输入条件参与最终计算过程中去调整潜在蒸发速率项下的实际贡献份额占比关系。 ```python import numpy as np from pyhdf.SD import SD, SDC def read_modis_lai(file_path): hdf = SD(file_path, SDC.READ) datasets_dict = {} for idx,sds in enumerate(hdf.datasets().keys()): sds_obj=hdf.select(sds) data=sds_obj[:,:].astype(np.float64) scale_factor= getattr(sds_obj,"scale_factor",None) if scale_factor is not None: data *= float(scale_factor) fillvalue=getattr(sds_obj,'_FillValue',None) if fillvalue is not None: invalid=np.where(data==float(fillvalue)) data[invalid]=np.nan datasets_dict[sds]=data return datasets_dict['Lai'] ``` 上述代码片段展示了如何读取并预处理 MODIS LAI 数据的一个简单例子。 ---
评论 44
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

等待着冬天的风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值