Ubuntu 22.04 安装 CUDA 和 cuDNN 及验证

本文详细介绍了在Ubuntu22.04系统上安装CUDA12.1.0和cuDNN8.9.6.50的步骤,包括检查GPU支持、下载、命令行安装、依赖包处理和cuDNN验证的全过程,以及解决FreeImage.h缺失问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ubuntu 22.04 安装 CUDA 和 cuDNN 过程及注意事项

安装 CUAD 及验证

  • 进入终端 nvidia-smi查看支持的最高 CUDA 版本,我这里最高支持 12.4
  • 进入官网 CUDA Toolkit 下载对应版本的 CUDA,我这里下载 12.1.0
  • 选择对应版本 runfile,在终端执行对应的命令
  • 其余的按照这个链接里执行就可以了
  • 最后,测试是否安装成功:nvcc -V

安装 cuDNN

  • 官网链接,现在都需要登陆下载,推荐下载 deb 文件
  • 下载对应版本的 deb 文件,命令安装sudo dpkg -i cudnn-local-repo-ubuntu2204-8.9.6.50_1.0-1_amd64.deb
  • 安装完成会显示,后面的操作命令,执行对应的命令就行:sudo cp /var/cudnn-local-repo-ubuntu2204-8.9.6.50/cudnn-local-1998375D-keyring.gpg /usr/share/keyrings/,若没有显示提示命令则执行通用命令:sudo cp /var/cudnn-local-*/cudnn-*-keyring.gpg /usr/share/keyrings/
  • 进入文件夹cd /var/cudnn-local-repo-ubuntu2204-8.9.6.50/,安装对应的依赖包,这些依赖包直接下载安装会失败,都包含在deb文件中,进入上面提到的文件夹安装即可:
    • sudo dpkg -i libcudnn8_8.9.6.50-1+cuda12.2_amd64.deb
    • sudo dpkg -i libcudnn8-dev_8.9.6.50-1+cuda12.2_amd64.deb
    • sudo dpkg -i libcudnn8-samples_8.9.6.50-1+cuda12.2_amd64.deb

验证 cuDNN 安装是否成功

  • 最后,测试是否安装成功:
    • 进入文件夹cd /usr/src/cudnn_samples_v8,将 cuDNN 示例复制到用户文件 cp -r /usr/src/cudnn_samples_v8/ $HOME

    若没有该文件夹,按照官网教程安装执行验证

    • 编译 cuDNN mnisiCUDNN 示例 make clean && make

    报错没有找到 FreeImage.h 文件,sudo apt-get install libfreeimage-dev安装依赖

    • 运行 mnistCUDNN 示例./mnistCUDNN
    • 返回 Test passed! 则证明安装成功
### 如何在 Ubuntu 22.04安装 CUDA cuDNN #### 下载并准备安装文件 前往 NVIDIA 的官方网站来获取适用于 Ubuntu 22.04CUDA 工具包本地 Debian 安装包[^2]。确保按照 CPU 架构其他硬件特性挑选恰当的版本。 对于 cuDNN 库,则需访问对应的页面找到与所选 CUDA 版本相匹配的 cuDNN 文件,并下载压缩包形式的资源[^5]。 #### 更新系统软件源列表 为了使后续操作顺利,在开始之前应该先更新系统的 APT 软件源索引: ```bash sudo apt update && sudo apt upgrade -y ``` #### 安装依赖项 某些必要的开发工具库可能尚未被预装,因此建议预先执行如下命令以添加这些组件: ```bash sudo apt install build-essential dkms linux-headers-$(uname -r) ``` #### 执行 CUDA 安装流程 一旦获得了正确的 .deb 文件之后,可以通过 dpkg 命令完成 CUDA 的部署工作: ```bash sudo dpkg -i cuda-repo-ubuntu2204_12.1.0-1_amd64.deb sudo cp /var/cuda/repos/ubuntu2204/x86_64/7fa2af80.pub /etc/apt/trusted.gpg.d/ sudo apt-get update sudo apt-get -y install cuda ``` 注意这里假设已经得到了名为 `cuda-repo-ubuntu2204_12.1.0-1_amd64.deb` 的具体 deb 包名;实际过程中应当依据实际情况调整该名称。 #### 设置环境变量 为了让系统能够识别新安装好的 CUDA 编译器及相关路径,编辑用户的 shell 配置文件(比如 `.bashrc` 或者其他根据使用的 Shell 类型而定),加入以下两行内容以便于每次登录时自动加载所需的环境设置: ```bash export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` 接着运行 source ~/.bashrc 来即时生效更改后的配置。 #### 解压并复制 cuDNN 文件到指定位置 解压缩刚才下载下来的 cuDNN 归档文件至临时目录内,再把其中包含头文件以及共享对象链接库移动到 `/usr/local/cuda` 目录结构下的相应子文件夹里去: ```bash tar -xvf cudnn-linux-x86_64-8.x.x.x_cudaX.Y-archive.tar.xz sudo cp cudnn-*-archive/include/* /usr/local/cuda/include/ sudo cp cudnn-*-archive/lib/* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/* sudo chmod a+r /usr/local/cuda/lib64/* ``` 这里的 X.Y 表示具体的 CUDA 主次版本号,请替换为实际数值。 #### 测试验证安装成果 最后一步是要确认整个过程无误,可以尝试编译一个简单的测试程序样例来看看能否成功调用 GPU 加速功能。这通常位于 `/usr/local/cuda/samples/` 中间的一个 C/C++ 源码项目,通过 makefile 进行构建即可。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值