互相关性定理(Cross-Correlation Theorem)与卷积定理(Convolution Theorem)

目录

互相关性定理(Cross-Correlation Theorem)

卷积定理(Convolution Theorem)

互功率谱(cross-spectrum)

相干性函数(一致性函数,coherence)


互相关性定理(Cross-Correlation Theorem)

f(t)和g(t)的傅里叶变换分别为:

f(t)\equiv \mathcal{F}_{\nu}[F(\nu)](t)=\int^{\infty}_{-\infty}F(\nu)e^{-2\pi i\nu t}d\nu

g(t)\equiv \mathcal{F}_{\nu}[G(\nu)](t)=\int^{\infty}_{-\infty}G(\nu)e^{-2\pi i\nu t}d\nu

R_{fg}(\tau)表示f(t)和g(t)的互相关函数,然后我们可以得到:

R_{fg}(\tau)=\int^{\infty}_{-\infty}f^{*}(t)g(t+\tau)dt\\ =\int^{\infty}_{-\infty}[\int^{\infty}_{-\infty}F^{*}(\nu)e^{2\pi i\nu t}d\nu\int^{\infty}_{-\infty}G(\nu')e^{-2\pi i\nu'(t+\tau)}d\nu']dt\\ =\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}F^{*}(\nu)G(\nu')e^{-2\pi it(\nu'-\nu)e^{-2\pi i\nu'\tau}}dt d\nu d\nu'\\ =\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}F^{*}(\nu)G(\nu')e^{-2\pi i\nu'\tau }[\int^{\infty}_{-\infty}e^{-2\pi it(\nu'-\nu)}dt ]d\nu d\nu'\\ =\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}F^{*}(\nu)G(\nu')e^{-2\pi i\nu'\tau }\delta(\nu'-\nu)d\nu' d\nu\\ =\int^{\infty}_{-\infty}F^{*}(\nu)G(\nu)e^{-2\pi i\nu \tau }d\nu\\ =\mathcal{F}^{-1}[F^{*}(\nu)G(\nu)]
其中\mathcal{F}代表傅里叶变换,z^{*}代表复共轭,由上述可得互相关性定理(Cross-Correlation Theorem)或相关性定理(Correlation Theorem):

\mathcal{F}[R_{fg}(\tau)]=F^{*}(\nu)G(\nu)

当f=g时,互相关性定理会简化为维纳-辛钦定理(Wiener-Khinchin Theorem)。

卷积定理(Convolution Theorem)

注意互相关性定理与卷积定理的区别:

f(t)*g(t)=\int^{\infty}_{-\infty}f(\tau)g(t-\tau)d\tau

\mathcal{F}[f(t)*g(t)]=F(\nu)G(\nu)

两者区别为是否去共轭。后者的推导与上述过程基本一致。

互功率谱(cross-spectrum)

当f(t)和g(t)均值都为0时,此时R_{fg}(\tau)变为互协方差函数(cross-covariance),这时候我们把\mathcal{F}[R_{fg}(\tau)]成为互功率谱(cross-spectrum),这个会在信号的相干性频谱中提到(the squared coherency spectrum)。

相干性函数(一致性函数,coherence)

在信号处理中,相干性是一种统计量,可以用来检验两个信号或数据集之间的关系。它通常用于估计线性系统输入输出之间的功率转移。如果信号是遍历的,而系统函数是线性的,它可以用来估计输入和输出之间的因果关系。

两个信号x(t)和y(t)之间的相干性(有时称为幅度平方相干性)是一个实值函数,定义为:

C_{xy}(f)=\frac{|G_{xy}(f)|^{2}}{G_{xx}(f)G_{yy}(f)}

其中G_{xy}(f)=\mathcal{F}[R_{fg}(\tau)]为x与y之间的互功率谱密度,Gxx(f)和Gyy(f)分别为x和y的自功率谱密度。谱密度的大小记为|G|。考虑到上面提到的限制(遍历性,线性度),相干函数估计了通过最佳线性最小二乘函数从x(t)中预测y(t)的程度。

相干性的值总是满足0<C_{xy}(f)<1。对于具有单个输入x(t)和单个输出y(t)的理想常参数线性系统,其相干性将等于1。为了看到这一点,考虑一个脉冲响应h(t)的线性系统,定义为:

y(t)=h(t)*x(t)

其中*表示卷积。在傅里叶域中,方程变为:

Y(f)=H(f)X(f)

其中Y(f)是y(t)的傅里叶变换,H(f)是线性系统传递函数。对于理想线性系统:

G_{yy}=|H(f)|^{2}G_{xx}(f)

G_{xy}=H(f)G_{xx}(f)

因为G_{xx}(f)是实数,所以:

G_{xy}(f)=\frac{|H(f)G_{xx}(f)|^{2}}{G_{xx}(f)G_{yy}(f)}=\frac{|H(f)G_{xx}(f)|^{2}}{G_{xx}^{2}(f)|H(f)|^{2}}=\frac{|G_{xx}(f)|^{2}}{G_{xx}^{2}(f)}=1

然而,在物理世界中,理想的线性系统很少实现,噪声是系统测量的固有组成部分,而且单个输入、单个输出线性系统可能不足以捕获完整的系统动力学。在理想线性系统假设不充分的情况下,Cauchy-Schwarz不等式保证了C_{xy}\leq 1的值。

如果C_{xy}小于1但大于0,则表明:噪声正在进入测量,有关x(t)和y(t)的假设函数不是线性的,或者y(t)由于输入x(t)和其他输入而产生输出。考虑到上述的约束条件,如果相干性等于零,这表明x(t)和y(t)是完全不相关的。

因此,线性系统的相干性表示由该频率的输入产生的输出信号功率的小数部分。我们也可以把数量1-C_{xy}看作是在特定频率下,不受输入贡献的输出分数功率的估计。这自然引出了相干输出谱的定义:

G_{vv}=C_{xy}G_{yy}

G_{vv}提供与噪声或其他输入无关的输出功率的频谱量化量度。

 

 

 

 

 

 

 

 

 

 

  • 3
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值