高斯分布——在误差测量中的推导


a a a 为真值, x 1 x_{1} x1 为测量值, δ 1 \delta_{1} δ1 为误差,那么

误差为 δ 1 \delta_{1} δ1 的观测值 x 1 x_{1} x1 出现的概率为 f ( δ 1 ) d δ 1 f(\delta_{1})d\delta_{1} f(δ1)dδ1

误差为 δ 2 \delta_{2} δ2 的观测值 x 2 x_{2} x2 出现的概率为 f ( δ 2 ) d δ 2 f(\delta_{2})d\delta_{2} f(δ2)dδ2

⋯ \cdots

误差为 δ N \delta _{N} δN 的观测值 x N x_{N} xN 出现的概率为 f ( δ N ) d δ N f(\delta_{N})d\delta_{N} f(δN)dδN

由于 δ 1 \delta_{1} δ1 δ 2 \delta_{2} δ2 ⋯ \cdots δ N \delta_{N} δN 彼此独立,所以这些误差同时出现的概率 P P P 是各误差概率的相乘积,即

P = P 1 ⋅ P 2 ⋯ P N = f ( δ 1 ) f ( δ 2 ) ⋯ f ( δ N ) d δ 1 d δ 1 ⋯ d δ N (1) \begin{aligned} P&=P_{1}·P_{2}\cdots P_{N}\\ &=f(\delta_{1})f(\delta_{2})\cdots f(\delta_{N})\mathrm{d}\delta_{1}\mathrm{d}\delta_{1}\cdots \mathrm{d}\delta_{N} \end{aligned} \tag{1} P=P1P2PN=f(δ1)f(δ2)f(δN)dδ1dδ1dδN(1)

这里

δ 1 = x 1 − a , δ 2 = x 2 − a , ⋯   , δ N = x N − a (2) \delta_{1}=x_{1}-a,\delta_{2}=x_{2}-a,\cdots,\delta_{N}=x_{N}-a \tag{2} δ1=x1a,δ2=x2a,,δN=xNa(2)

因为 δ 1 \delta_{1} δ1 δ 2 \delta_{2} δ2 ⋯ \cdots δ N \delta_{N} δN 等未知量是 a a a 的函数,故 P P P 也是 a a a 的函数,只有当概率 P P P 是最大值时, a a a 的值才是最可靠值,因此可从 P P P a a a 求微分,并使之等于零而求出。为了计算简便,可先取 (1) 式的对数:

ln ⁡ P = ln ⁡ f ( δ 1 ) + ln ⁡ f ( δ 2 ) + ⋯ + ln ⁡ f ( δ N ) + ln ⁡ d δ 1 + ln ⁡ d δ 2 + ⋯ + ln ⁡ d δ N \begin{aligned} \ln P=&\ln f(\delta_{1})+\ln f(\delta_{2})+\cdots+\ln f(\delta_{N})\\ &+\ln \mathrm{d}\delta_{1}+\ln \mathrm{d}\delta_{2}+\cdots+\ln \mathrm{d}\delta_{N} \end{aligned} lnP=lnf(δ1)+lnf(δ2)++lnf(δN)+lndδ1+lndδ2++lndδN

注意上式中取 ln ⁡ P \ln P lnP 之后, ln ⁡ ( ) \ln () ln() 为一个单调函数,并不改变 P ( a ) P(a) P(a) 的极大值点。

上式中的 d δ 1 \mathrm{d}\delta_{1} dδ1 d δ 2 \mathrm{d}\delta_{2} dδ2 ⋯ \cdots d δ N \mathrm{d}\delta_{N} dδN 是任意假设的微分量,因此可以看成是与 a a a 无关,微分上式并使之为零,可得:

d ln ⁡ P d a = d ln ⁡ f ( δ 1 ) d δ 1 d δ 1 d a + d ln ⁡ f ( δ 2 ) d δ 2 d δ 2 d a + ⋯ + d ln ⁡ f ( δ N ) d δ N d δ N d a \frac{\mathrm{d}\ln P}{\mathrm{d}a}=\frac{\mathrm{d}\ln f(\delta_{1})}{\mathrm{d}\delta_{1}}\frac{\mathrm{d}\delta_{1}}{\mathrm{d}a}+\frac{\mathrm{d}\ln f(\delta_{2})}{\mathrm{d}\delta_{2}}\frac{\mathrm{d}\delta_{2}}{\mathrm{d}a}+\cdots+\frac{\mathrm{d}\ln f(\delta_{N})}{\mathrm{d}\delta_{N}}\frac{\mathrm{d}\delta_{N}}{\mathrm{d}a} dadlnP=dδ1dlnf(δ1)dadδ1+dδ2dlnf(δ2)dadδ2++dδNdlnf(δN)dadδN

从 (2) 式得:

d δ 1 d a = d δ 2 d a = ⋯ = d δ N d a = − 1 \frac{\mathrm{d}\delta_{1}}{\mathrm{d}a}=\frac{\mathrm{d}\delta_{2}}{\mathrm{d}a}=\cdots=\frac{\mathrm{d}\delta_{N}}{\mathrm{d}a}=-1 dadδ1=dadδ2==dadδN=1

因而有:

d ln ⁡ f ( δ 1 ) δ 1 d δ 1 δ 1 + d ln ⁡ f ( δ 2 ) δ 2 d δ 2 δ 2 + ⋯ + d ln ⁡ f ( δ N ) δ N d δ N δ N = 0 (3) \frac{\mathrm{d}\ln f(\delta_{1})}{\delta_{1}\mathrm{d}\delta_{1}}\delta_{1}+\frac{\mathrm{d}\ln f(\delta_{2})}{\delta_{2}\mathrm{d}\delta_{2}}\delta_{2}+\cdots+\frac{\mathrm{d}\ln f(\delta_{N})}{\delta_{N}\mathrm{d}\delta_{N}}\delta_{N}=0 \tag{3} δ1dδ1dlnf(δ1)δ1+δ2dδ2dlnf(δ2)δ2++δNdδNdlnf(δN)δN=0(3)

由于随机误差的抵偿性,有:

δ 1 + δ 2 + ⋯ + δ N = ∑ δ i = 0 (4) \delta_{1}+\delta_{2}+\cdots+\delta_{N}=\sum\delta_{i}=0 \tag{4} δ1+δ2++δN=δi=0(4)

若 (3) 式与 (4) 式同时成立,一定有:

d ln ⁡ f ( δ 1 ) δ 1 d δ 1 = d ln ⁡ f ( δ 2 ) δ 2 d δ 2 = ⋯ = d ln ⁡ f ( δ N ) δ N d δ N = k \frac{\mathrm{d}\ln f(\delta_{1})}{\delta_{1}\mathrm{d}\delta_{1}}=\frac{\mathrm{d}\ln f(\delta_{2})}{\delta_{2}\mathrm{d}\delta_{2}}=\cdots=\frac{\mathrm{d}\ln f(\delta_{N})}{\delta_{N}\mathrm{d}\delta_{N}}=k δ1dδ1dlnf(δ1)=δ2dδ2dlnf(δ2)==δNdδNdlnf(δN)=k

式中 k k k 为任意常量,现单就任意误差 δ \delta δ 而言,有:

d ln ⁡ f ( δ ) δ d δ = k \frac{\mathrm{d}\ln f(\delta)}{\delta \mathrm{d}\delta}=k δdδdlnf(δ)=k

将它积分,得:

ln ⁡ f ( δ ) = 1 2 k δ 2 + ln ⁡ σ \ln f(\delta)=\frac{1}{2}k\delta^{2}+\ln \sigma lnf(δ)=21kδ2+lnσ

或:

f ( δ ) = c e 1 2 k δ 2 f(\delta)=ce^{\frac{1}{2}k\delta^{2}} f(δ)=ce21kδ2

式中 c c c 为常量。根据随机误差的单峰性,当 δ = 0 \delta=0 δ=0 时, f ( δ ) f(\delta) f(δ) 有最大值,当误差绝对值增大时出现的概率应减小,即上式应在 δ \delta δ 绝对值增加时, f ( δ ) f(\delta) f(δ) 应减小,故指数项必有负号,令 1 2 k = − k 2 \frac{1}{2}k=-k^{2} 21k=k2,则:

f ( δ ) = c e − k 2 δ 2 f(\delta)=ce^{-k^{2}\delta^{2}} f(δ)=cek2δ2

再由误差为 − ∞ -\infty + ∞ +\infty + 之间时,所有误差出现的概率总和应等于 1,可确定积分常数 c c c

c ∫ e − k 2 δ 2 d δ = 1 c\int e^{-k^{2}\delta^{2}}\mathrm{d}\delta=1 cek2δ2dδ=1

求得 c = k π c=\frac{k}{\sqrt{\pi}} c=π k,所以:

f ( δ ) = k π e − k 2 δ 2 f(\delta)=\frac{k}{\sqrt{\pi}}e^{-k^{2}\delta^{2}} f(δ)=π kek2δ2

上述推导来自兰州大学实验书中的推导。

注意上述推导中并没有对对数的底数做限制,即不一定非得是 e e e 为底,这是为何?这是因为正态分布函数的底数具有随意性可以在不同底数间互换:

A α β = f ( δ ) = k π e − k 2 δ 2 A\alpha^{\beta}=f(\delta)=\frac{k}{\sqrt{\pi}}e^{-k^{2}\delta^{2}} Aαβ=f(δ)=π kek2δ2

可得:

f ( δ ) = A α − ln ⁡ α A π k α − k 2 δ 2 ln ⁡ α = A ′ α − k ′ 2 δ 2 f(\delta)=A\alpha^{-\ln_{\alpha}\frac{A\sqrt{\pi}}{k}}\alpha^{-\frac{k^{2}\delta^{2}}{\ln \alpha}}=A'\alpha^{-k'^{2}\delta^{2}} f(δ)=AαlnαkAπ αlnαk2δ2=Aαk2δ2

上述形式与正态分布形式上无异,性质上也差不多,但是 A ′ A' A k ′ k' k 中仍然含有 ln ⁡ \ln ln,这就说明了上述推导并不严谨,但是在何处呢?

现代的对于误差函数的推导是直接利用特征函数,需要分别证明两个东西:

1)中心极限定理;

2)正态分布的再生性。

前者证明了独立同分布的正态分布属性,后者证明了不同正态分布的随机变量之和(假设不同分布的误差变量具有可加性)仍为正态分布。上述两个证明在教材中可以轻易找到。

之所以需要上述两个证明,我们可以举一个例子:

设炮弹射击的目标位置是原点 ( 0 , 0 ) (0,0) (0,0),炮弹的落点为 ( X , Y ) (X,Y) (X,Y),它的一个坐标,例如 X X X,也是落点对目标沿 x x x 轴的偏差, X X X(或 Y Y Y)是随机的。产生偏差的原因有种种:瞄准时有误差 X 1 X_{1} X1,炮弹或炮身结构所引起的误差 X 2 X_{2} X2,空气阻力产生的误差 X 3 X_{3} X3 等等。因而, X X X 可看成这些误差的总和:

X = ∑ i ∑ k X i k = ∑ i X i = ∑ k X k X=\sum_{i}\sum_{k}X_{ik}=\sum_{i}X_{i}=\sum_{k}X_{k} X=ikXik=iXi=kXk

其中 X i k X_{ik} Xik 表示第 i i i 种误差的第 k k k 次取值, X i X_{i} Xi 表示第 i i i 中误差的均值, X k X_{k} Xk 表示第 k k k 个所有不同分布下的误差的平均值,后一种解释是非常重要的,其说明了不同分布的随机变量相加之后再去看平均值也是遵循正态分布的,这种多分布下变通的理解是非常重要的。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值