流形介绍(Manifolds: A Gentle Introduction)

Preface

本文翻译自 Manifolds: A Gentle Introduction,有兴趣的可以去读一读原文。我的翻译习惯是,去除我认为不重要的部分,然后加上自己的理解或注释,所以可能会把原文改的面目全非。对了,这篇博客在讲述切向量与切空间时太过简略,以至于把我困住,甚至让我的大脑内部产生激烈的矛盾而使我头疼,于是借了本书《微分流形初步》(第二版,陈维桓),加以辅助,才得以理解了切向量。

之所以学习这篇博客,是因为最近遇到了李群,查阅其定义,说是带有群结构的光滑流形(manifold)。加之以前读过一篇论文 From One Point to a Manifold: Knowledge Graph Embedding for Precise Link Prediction,虽然我读懂了,其中的 manifold 其实就是超球面、超平面之类的几何体,也并未超出一般数学的范畴,但我想对 manifold 作进一步了解。前段时间一个师兄问我知不知道流形学习,我只回答说在西瓜书上看到过,只不过没看懂。于是觉得:怎么到处都是你?还是学一学吧!

翻译

流形属于拓扑学微分几何的数学分支。我将更多地关注后一类流形的研究,幸运的是,后者不那么抽象,比前者更直观。

对于完全没有接触过流形的人,这句话会难以理解,甚至如果你没有学过拓扑学,就更无法理解。我们先看一个对流形的定义:
在这里插入图片描述
这是拓扑流形的定义,一堆拓扑学术语,而拓扑学是相当抽象的,因为它处在很多数学分支的上层。对于这里的拓扑学术语,我就不详细说了,在博文 Topological Space 中,我对什么是拓扑空间做了简单介绍,里面有这些术语。如果不想看,那就暂且认为 “manifold 其实就是超球面、超平面之类的几何体”,然后跳过这段注释的剩余部分。
对于这个 Hausdorff 拓扑空间呢,可以理解为:一个点集,上面定义的拓扑规定了点之间如何彼此相邻,那么 p p p 的一个开邻域就是指 p p p 以及和它相邻的一些点。同胚:可以简单地理解为一对一连续映射。如果对于每一个 p ∈ M p \in M pM,都有一个开邻域能映射到 d d d 维欧氏空间 R d \mathbb{R}^d Rd 的一个开子集,就称 M M M d d d 维拓扑流形。抽象吧?看不懂不要紧,先去看博主讲述的直观内容吧,这里是给有拓扑学基础的人看的。
再看微分流形:
在这里插入图片描述
它是拓扑流形的一种,在拓扑流形上加入了微分结构,可以在上面进行微分运算。这类似于拓扑空间和度量空间的关系:度量空间是拓扑空间的一种,更具象化了,是有度量结构的拓扑空间。所以作者会说后者更为直观,就像度量空间比拓扑空间更直观一样。

Manifolds

大多数做 ML 的人第一次听到这个术语是在流形假设中:
\quad\quad 流形假设是指:现实世界的高维数据(如图像)位于嵌入在高维空间中低维流形上。

“嵌入在高维空间中的低维流形”:你可以将三维空间中的球面或者曲面当作例子,当你在球面上行走时,只有面的两个维度,而不能在三个维度的空间中自由运动,即限制了一个维度。从方程的角度来讲,球面 x 2 + y 2 + z 2 = r 2 x^2 + y^2+ z^2 = r^2 x2+y2+z2=r2,只需要两个坐标便能确定另一个坐标(把球面分为上半球面和下半球面的话);三维空间中的直线,参数方程为 x ( t ) = a t , y ( t ) = b t , z ( t ) = c t x(t) = at, y(t) = bt, z(t) = ct x(t)=at,y(t)=bt,z(t)=ct一个 t t t 就能确定一个点,所以它是一维的。

这里的主要思想是,即使真实世界数据是高维的,实际上也可能有一些低维的表示。例如,与原始的 256 × 256 × 3 256\times256\times3 256×256×3 图像维度相比,所有 “猫图像” 可能位于更低维的流形上。这是有道理的,因为经验上,我们能够在一个容量有限的神经网络中学习这些东西。否则,学习任意的 256 × 256 × 3 256\times256\times3 256×256×3 函数将是棘手的。

好了,这些都很好,但仍然没有回答这个问题:什么是流形?拓扑学的抽象定义很好,但太抽象了。所以我不会深入所有的技术细节,但我们会看到,一旦你掌握了它的窍门,微分流形和黎曼流形是惊人的直观(至少在低维)。

Circles and Spheres as Manifolds

流形是一种 “局部” 类似于欧式空间的拓扑空间。这显然没有多大意义,除非你学过拓扑学。一种直观的(但不完全正确的)思考方法是,从 R k \mathbb{R}^k Rk 中取一个几何对象,并试图将其 “放” R n \mathbb{R}^n Rn 中, n > k n \gt k n>k。我们来看第一个例子,线段,它显然是一维的。

在二维空间中嵌入一条线的一种方法是将其 “缠绕” 成一个圆圈,如图 1 所示。圆的每段弧在局部看起来更接近线段,如果你取一段无限小的弧,它将 “局部” 类似于一维线段

在这里插入图片描述

图 1:圆是嵌入在二维空间中的一维流形,其中圆的每段弧在局部类似于线段(来源:Wikipedia)

当然,拓扑学上流形有更精确的定义:局部同胚于欧式空间的特殊集合。同胚是一种特殊的保持拓扑性质的连续一对一映射。这个定义是非常抽象的,因为它说(拓扑)流形只是一种特殊的集合,没有任何关于如何将其视为几何对象的明确参考

实际上,一维中的任何 “闭合” 环路都是流形,因为你可以想象将它 “缠绕” 成正确的形状。另一种考虑它的方式是,从一条线(段),你可以找到一个连续的一对一映射到一个闭环。有趣的一点是,数字 “8” 不是一个流形,因为交叉点不是局部像线段的。

这里不知道为什么说 “闭合”?线段放到二维空间中算不算流形?咱不知道。但 “8” 一定不是,因为交叉点处和线段不是同胚的。

这些闭环流形是最容易考虑的 1D 流形,但也有其他奇怪的情况,如图 2 所示。正如你所看到的,我们可以有各种不同的形状。“大的想法” 是,我们也可以有延伸到无限的 “开放式” 曲线,这是对一维线的自然映射。

在这里插入图片描述

图 2:圆、抛物线、双曲线和三次曲线都是一维流形。注意:四种不同的颜色都在不同的轴上,如果它有一个开放的末端,就会延伸到无限远 (来源:Wikipedia)

( 0 , 1 ) (0, 1) (0,1) R \mathbb{R} R 之间存在一对一映射,且连续,是同胚吗?干嘛要闭环或延申到无限?有人知道的话欢迎讨论。

现在我们来看二维流形。最简单的是一个球面。你可以想象球面的每一个无限小的局部都类似于一个二维欧式平面。同样,任何不自交的二维曲面(包括平面)也是二维流形。图 3 显示了一些示例。

图 3:R3 中的非相交封闭曲面是二维流形的例子,如球面、环面、双环面、交叉曲面和克莱因瓶(来源:Wolfram)

对于这些例子,你可以想象这些流形上的每个点的局部类似于一个二维平面。最好的比喻是地球。我们知道地球是圆的,但当我们站在田野里时,它看起来是平的。我们当然可以在更大维度的欧式空间中嵌入更高维度的流形,但是你无法真正地将它们形象化。

希望在看完这些例子之后,你对流形有了一些直观的认识。在下一节中,我们将带着微分几何的知识回到数学。

其实也就是一些几何体上的微分运算。刚开始觉得晦涩难懂,但真正明白了一些基本概念、推导了公式,再去回看一下高等数学的微分几何部分后,发现,这篇博文通篇都是在讲微分的链式法则“扯了一大堆淡”

A (slightly) More Formal Look at Manifolds

现在我们有了一些直觉,让我们首先看一下 (拓扑)流形的正式定义

一个 n n n 维拓扑流形 M M M 是一个具有可数基的拓扑 Hausdorff 空间,它局部同胚于 R n \mathbb{R}^n Rn。这意味着对于 M M M 中的每一个点 p p p ,存在 p p p 的开邻域 U U U 和一个同胚 φ : U → V \varphi: U \to V φ:UV,它将集合 U U U 映射到一个开集 V ⊂ R n V \subset \mathbb{R}^n VRn 上。且:
∙ \bullet 映射 φ : U → V \varphi: U \to V φ:UV 称为 chartcoordinate system;【图,坐标系】
∙ \bullet 集合 U U U 是 chart 的 domainlocal coordinate neighbourhood;【定义域,局部坐标邻域】
∙ \bullet p ∈ U p \in U pUimage,用 φ ( p ) ∈ R n φ(p) \in \mathbb{R}^n φ(p)Rn 表示,称为图中 p p pcoordinateslocal coordinates。【(局部)坐标】
∙ \bullet A set of charts, { φ α   ∣   α ∈ N } \{\varphi_{\alpha} ~|~ \alpha \in \mathbb{N}\} {φα  αN}, with domains U α U_{\alpha} Uα is called the atlas of M M M, if   ⋃ α ∈ N U α = M ~\bigcup_{\alpha \in \mathbb{N}}U_{\alpha} = M  αNUα=M。【图册】

这个定义很难理解,特别是因为 Hausdorff 空间从来没有定义过。这不是很重要,因为我们不打算进入拓扑学,最重要的部分是新的术语,谢天谢地,它有一个直观的解释。让我们看一看图 4,它应该能澄清一些思想。

在这里插入图片描述

图 4:在具有不同 chart (连续 1-1 映射)的流形上的两个相交的块(绿色和紫色,青色为交叉部分)映射到 Rn 欧式空间。注意,这些块的交集在 Rn 欧式空间中具有光滑的 1-1 映射,使其成为微分流形(来源:Wikipedia)

首先,此例中的流形是 X X X,我们可以想象它被嵌入到某个高维空间 n + k n+k n+k 中。我们有两个不同的 “块” 或 定义域 (or 局部坐标邻域),由 X X X 中的 U α U_{\alpha} Uα (绿色) 和 U β U_{\beta} Uβ (紫色) 定义。因为它是一个流形,我们知道每个局部点都可以通过一个映射 φ \varphi φ (our or 坐标系) 将其映射到低维欧式空间 (比如 R n \mathbb{R}^n Rn)。如果我们取定义域中的点 p p p,并将其映射到低维欧式空间中,这个映射的像点被称为坐标或者说是 p p p局部坐标。最后,如果我们有一堆图,它们的域覆盖整个流形,那么这堆图就叫做图册

起初不知为何 φ ( p ) \varphi(p) φ(p) 叫做 p p p 点的 (局部)坐标,其他一些概念也只知定义,而不知其所以然。如果把这个映射过程看作给 manifold 安装坐标系,一切都变得和谐美丽。试想,这个 manifold 仅仅是一个 Hausdorff 拓扑空间,点集而已,就如同一张白纸,上面可没有什么坐标系的概念,那么点自然也就没有坐标的概念。如今,利用 φ : U → V \varphi: U \to V φ:UV 将 manifold 映射至欧式空间,不就是给 manifold 安装坐标系吗!那么 φ ( p ) \varphi(p) φ(p) 肯定叫做点 p p p 的坐标啊,而 φ \varphi φ 的定义域 U U U 是坐标系安装的地方,于是叫做安装坐标的邻域,简称坐标邻域

Manifolds: All About Mapping

关键是要记住流形都是关于映射的。用图把流形映射到欧式空间的局部坐标系,从一个局部坐标系到另一个局部坐标系的映射。有时我们会做一次 “跳跃” (例如流形到局部坐标),或多次 “跳跃” (曲线参数到流形上的位置再到局部坐标)。因为大多数映射都是 1-1 的,所以我们可以 “跳来跳去”,它们不过是简单的函数组合。

博主将这些过程都看作映射,而我认为看作 “给 manifold 安装局部坐标系” 更形象,因为欧式空间本身也是一个流形,它的 “本体” 也是没有坐标系的概念的,只不过由于这个 “本体” 的特殊线性结构,给它安装仅仅一个标准笛卡尔坐标系就可以表示整个空间,而不用 “局部” 了。
想想以前学的坐标系变换,点在不同坐标系下的坐标是不一样的,说明 “本体” 上可以安装不同的坐标系。拿三维空间来说,给你一个无限大的立方体,你可以在其上建立三维笛卡尔坐标系,而且可以建立不同的坐标系。
而如今,给你的 “本体” (manifold) 不再像欧式空间一样简单了,你只能在局部小邻域内安装坐标系,每个小邻域安装一个,多个坐标系把流形全部覆盖。

“曲线参数到流形上的位置”:下文会看到 p = γ ( t ) ∣ t = t 0 p = \gamma(t)|_{t=t_0} p=γ(t)t=t0,代表 γ ( t ) \gamma(t) γ(t) 是流形 M M M 上的一条曲线,而它到底是什么形式,咱不知道,也许可以是 { x = [ γ ( t ) ] 1 y = [ γ ( t ) ] 2 z = [ γ ( t ) ] 3 \left\{\begin{matrix} x = [\gamma(t)]_1 \\ y = [\gamma(t)]_2 \\ z = [\gamma(t)]_3 \end{matrix}\right. x=[γ(t)]1y=[γ(t)]2z=[γ(t)]3 表示一个三维坐标 ( x , y , z ) (x, y, z) (x,y,z),这是把二维球面 S 2 S^2 S2 嵌入到三维空间了,以至于需要三维坐标表示 S 2 S^2 S2 上的点;也许不是,它仅仅表示一个位置而已

图 4 中, φ α ( U α ∩ U β ) \varphi_\alpha(U_\alpha \cap U_\beta) φα(UαUβ) φ β ( U α ∩ U β ) \varphi_\beta(U_\alpha \cap U_\beta) φβ(UαUβ) 之间也存在映射,分别为 φ α β = φ β ∘ φ α − 1 : φ α ( U α ∩ U β ) → φ β ( U α ∩ U β ) \varphi_{\alpha\beta} = \varphi_{\beta} \circ \varphi_{\alpha}^{-1}: \varphi_\alpha(U_\alpha \cap U_\beta) \to \varphi_\beta(U_\alpha \cap U_\beta) φαβ=φβφα1:φα(UαUβ)φβ(UαUβ) φ β α = φ α ∘ φ β − 1 : φ β ( U α ∩ U β ) → φ α ( U α ∩ U β ) \varphi_{\beta\alpha} = \varphi_{\alpha} \circ \varphi_{\beta}^{-1}: \varphi_\beta(U_\alpha \cap U_\beta) \to \varphi_\alpha(U_\alpha \cap U_\beta) φβα=φαφβ1:φβ(UαUβ)φα(UαUβ) 称为 转换映射

这些转换函数很重要,因为根据它们的可微性,可以定义一类新的可微流形(如果它们是 k k k 次连续可微的,用 C k C^k Ck 表示)。在我们的讨论中最重要的是无限可微的转换映射,我们称之为光滑流形

Example 1: Euclidean Space is a Manifold

当然, R n \mathbb{R}^n Rn 中的标准欧式空间本身就是一个流形。它仅仅需要一个坐标图,这个坐标图就是恒等函数,也构成了它的图册。

这就是刚才我说的:它的 “本体” 也是没有坐标系的概念的

Example 2: A 1D Manifold with Multiple Charts

让我们举一个我们能想到的最简单的例子:一个圆。如果我们使用极坐标,单位圆可以用 r = 1 r = 1 r=1 θ \theta θ 参数化。

将圆嵌入到了极坐标系中?

单位圆是一个一维流形 M M M,所以它应该能够映射到 R \mathbb{R} R。我们可能会有一个简单的图表映射,比如 φ ( r , θ ) = θ \varphi(r, \theta) = \theta φ(r,θ)=θ,但是因为 θ \theta θ 是一个多值,我们需要限制定义域。此外,我们将需要多个图表映射,因为图表只能在开集上工作(类似于开区间,即不能使用 [ 0 , 2 π ) [0, 2\pi) [0,2π))。

我们可以创建四个图(或映射),如图 1 所示,其形式为 M → R M \to R MR: φ 1 ( r , θ ) = θ θ ∈ ( − π 3 , π 3 ) φ 2 ( r , θ ) = θ θ ∈ ( π 6 , 5 π 6 ) φ 3 ( r , θ ) = θ θ ∈ ( 2 π 3 , 4 π 3 ) φ 4 ( r , θ ) = θ θ ∈ ( 7 π 6 , 11 π 6 ) (1) \begin{aligned} \varphi_1(r, \theta) &= \theta \quad \theta \in (-\frac{\pi}{3}, \frac{\pi}{3}) \\ \varphi_2(r, \theta) &= \theta \quad \theta \in (\frac{\pi}{6}, \frac{5\pi}{6}) \\ \varphi_3(r, \theta) &= \theta \quad \theta \in (\frac{2\pi}{3}, \frac{4\pi}{3}) \\ \varphi_4(r, \theta) &= \theta \quad \theta \in (\frac{7\pi}{6}, \frac{11\pi}{6}) \tag{1} \end{aligned} φ1(r,θ)φ2(r,θ)φ3(r,θ)φ4(r,θ)=θθ(3π,3π)=θθ(6π,65π)=θθ(32π,34π)=θθ(67π,611π)(1) 请注意,图表之间在 θ \theta θ 上存在重叠,每个图表在原始圆上都有一个开集(即定义域)。 φ 1 , φ 2 , φ 3 , φ 4 \varphi_1, \varphi_2, \varphi_3, \varphi_4 φ1,φ2,φ3,φ4一起构成了 M M M 的一个图册,因为它们的定义域覆盖了整个流形。

我们也可以找到其他的图表来映射单位圆。让我们看一看另一个使用标准欧式坐标和立体投影的构造。图 5 显示了该构造的图片。
在这里插入图片描述

图 5:在 1D 圆流形上的图表构造

我们可以通过取圆的 “北极” 或 “南极” 来定义两个图表,从极点出发,与圆上的任何其他点连线,并将线段投射到 x x x 轴上(与 x x x 轴的交点)。这提供了从流形上的点到 R 1 \mathbb{R}^1 R1 的映射。“北极” 点用蓝色表示,“南极” 点用紫红色表示。注意:通过两个图映射的圆上的同一点不映射到 R 1 \mathbb{R}^1 R1 中的同一点,故而局部坐标不同

注意这个 “使用标准欧式坐标”,这里是使用了二维欧式坐标,作为工具,将圆映射到一维欧式空间中,而前面是使用了极坐标,最终都是映射至一维欧式空间 R。为什么需要这个工具?因为我们需要一种我们熟悉又方便的手段来表示流形中每个点的位置,也就是前面说的 “嵌入” 到高维的空间中。【当然,我们拿到的数据可能就是高维表示的。】

若使用 “北极” 点,对于圆上任何其他给定点 p = ( x , y ) p = (x, y) p=(x,y),可以通过相似三角形 (圆的半径为 1 1 1 a d j a c e n t o p p o s i t e \frac{adjacent}{opposite} oppositeadjacent) 找到它与 x x x 轴相交的位置: u 1 : = φ 1 ( p ) = φ 1 ( p ) 1 = x p 1 − y p (2) u_1 := \varphi_1(p) = \frac{\varphi_1(p)}{1} = \frac{x_p}{1 - y_p} \tag{2} u1:=φ1(p)=1φ1(p)=1ypxp(2)

按理说,安装完成后,工具就可以扔了。也确实,我们已经把圆 [这个manifold] 上的每一点映射到了 R \mathbb{R} R 上,当我们拿起一点时,它有一个 1-d 坐标。
但是,我们把二维欧式空间当作给 1-d manifold circle 安装坐标系的工具时,已经用 2-d 坐标来辨认圆上的点了。故而依然用 p = ( x p , y p ) p=(x_p, y_p) p=(xp,yp) 表示 φ \varphi φ 的定义域。

这定义了圆上除 “北极” 之外的每个点的映射。类似地,可以为圆上的任何点 q q q (除了“南极”点) 定义 “南极” 点映射:
u 2 : = φ 2 ( q ) = φ 2 ( q ) 1 = x q 1 + y q (3) u_2 := \varphi_2(q) = \frac{\varphi_2(q)}{1} = \frac{x_q}{1 + y_q} \tag{3} u2:=φ2(q)=1φ2(q)=1+yqxq(3) φ 1 \varphi_1 φ1 φ 2 \varphi_2 φ2 一起构成了 M M M 的一个图册。由于图是 1-1 的,我们也可以找到流形和局部坐标之间的逆映射(利用 x 2 + y 2 = 1 x^2 + y^2 = 1 x2+y2=1 的事实): x p = 2 u 1 u 1 2 + 1 , y p = u 1 2 − 1 u 1 2 + 1 x q = 2 u 2 u 2 2 + 1 , y q = − u 2 2 − 1 u 2 2 + 1 (4) \begin{aligned} & x_p = \frac{2u_1}{u_1^2 + 1}, &y_p &= \frac{u_1^2 - 1}{u_1^2 + 1} \\ & x_q = \frac{2u_2}{u_2^2 + 1}, &y_q &= -\frac{u_2^2 - 1}{u_2^2 + 1} \tag{4} \end{aligned} xp=u12+12u1,xq=u22+12u2,ypyq=u12+1u121=u22+1u221(4) 最后,我们可以得到转换图 φ α β \varphi_{\alpha \beta} φαβ为: u 2 = φ α β ( u 1 ) = φ 2 ∘ φ 1 − 1 ( u 1 ) = φ 2 [ φ 1 − 1 ( u 1 ) ] = φ 2 [ ( 2 u 1 u 1 2 + 1 , u 1 2 − 1 u 1 2 + 1 ) ] = 2 u 1 u 1 2 + 1 1 + u 1 2 − 1 u 1 2 + 1 = 1 u 1 (5) \begin{aligned} u_2 &= \varphi_{\alpha \beta}(u_1) \\ &= \varphi_2 \circ \varphi_1^{-1} (u_1) \\ &= \varphi_2[\varphi_1^{-1} (u_1)] \\ &= \varphi_2[(\frac{2u_1}{u_1^2 + 1}, \frac{u_1^2 - 1}{u_1^2 + 1})] \\ &= \frac{\frac{2u_1}{u_1^2 + 1}}{1 + \frac{u_1^2 - 1}{u_1^2 + 1}} \\ &= \frac{1}{u_1} \tag{5} \end{aligned} u2=φαβ(u1)=φ2φ11(u1)=φ2[φ11(u1)]=φ2[(u12+12u1,u12+1u121)]=1+u12+1u121u12+12u1=u11(5) 它只定义在定义域交集上(即圆上除了 “北极” 和 “南极” 的所有点)。

Example 3: Stereographic Projections for S n S^n Sn

正如你可能已经猜到的,我们也可以对 S 2 S^2 S2 执行相同的立体投影。图 6 显示了一个可视化图(不用管不同的表示法,我使用了维基百科上的一幅图,而不是尝试自己制作)。
在这里插入图片描述

图 6:2D 球面上的图表构造(来源:Wikipedia)

以类似的方式,我们可以选择一个点,画一条与球面上任何其他点相连的线,并将其投射到 z = 0 z = 0 z=0 (2D)平面上。这张图表可以包括除起点以外的所有点。使用两个各有一个 “极点” 的图表(例如:“北极” 和 “南极”),我们可以创建一个覆盖球面上所有点的图册。

一般来说, n n n 维球面是 n n n 维的流形,并被命名为 S n S^n Sn。所以一个圆是一个一维的球面,一个 “正常” 的球面是一个二维的球面,一个 n n n 维的球面可以嵌入到 ( n + 1 ) (n+1) (n+1) 维的欧式空间中,每个点与原点的距离都是等距的。

这个投影可以用同样的方法推广到 S n S^n Sn

  1. 在球面上选择任意一个焦点(不在你所投射到的超平面上),例如 “北极” 点 p N = ( 0 , … , 0 , 1 ) p_N = (0, \dots, 0, 1) pN=(0,,0,1)
  2. 发射一条从焦点到超球面上任何其他点的直线;
  3. 选择一个相对于焦点与 “赤道” 相交的平面。例:对于 “北极” 焦点,由前 n n n 个坐标给出的平面(记住 S n S^n Sn n + 1 n+1 n+1 个坐标,因为它嵌入在 R n + 1 \mathbb{R}^{n+1} Rn+1中)。

由此,我们可以推导出与前面示例类似的公式(使用相同的相似三角形参数)。以北极为例,在超球面上任意点 p = ( x , z ) ∈ S n p = (\bm{x}, z) \in S^n p=(x,z)Sn,超平面为 z = 0 z=0 z=0,我们可以得到投射点 ( u N , 0 ) (\bm{u}_N, 0) (uN,0) u N : = φ N ( p ) = x 1 − z x = 2 u N ∣ u N ∣ 2 + 1 z = ∣ u N ∣ 2 − 1 ∣ u N ∣ 2 + 1 (5) \begin{aligned} \bm{u}_N &:= \varphi_{N}(p) = \frac{\bm{x}}{1-z} \\ \bm{x} &= \frac{2\bm{u}_N}{|\bm{u}_N|^2 + 1} \\ z &= \frac{|\bm{u}_N|^2 - 1}{|\bm{u}_N|^2 + 1} \tag{5} \end{aligned} uNxz:=φN(p)=1zx=uN2+12uN=uN2+1uN21(5) 其中向量 u N , x ∈ R n \bm{u}_N, \bm{x} \in \mathbb{R}^n uN,xRn。对称的公式也可以在 “南极” 找到。

Tangent Spaces

为了计算流形上的实际距离之类的东西,我们必须引入一些概念。第一个是流形 M M M 在点 x x x 处的切空间 T x M T_xM TxM。这和它听起来很像:想象你沿着光滑流形上的曲线行走,当你经过点 x x x 时,你隐含地有一个与流形相切的速度(大小和方向),换句话说:一个切向量。当然还有许多其他经过点 x x x 的曲线,也都在 x x x 处有一个切向量,所有这样的切向量构成了 x x x M M M切空间。对于一个 2D 流形(嵌入到 3D 中),这将是一个平面,如图 7 所示。
在这里插入图片描述

图 7:流形 M 的一个切空间 TxM,切向量 v∈TxM ,沿着一条穿过 x∈M 的曲线(来源:维基百科)

流形甚至不需要嵌入到高维空间中(回想一下,它们被定义为映射到欧式空间的特殊集合),所以我们应该小心处理这些可视化。然而,有直觉总是好的。让我们试着用两步来形式化这个想法:第一步更直观一些,第二步是更深入的观察,以允许我们执行更多的操作。

新的想法:球面之所以是 2D 流形却被我们说成是 3D,是因为它被赋予了 3D 坐标(被嵌入在了 3D 欧式空间中),实际上当你站在球面上,滑动时,你并不能进行立体式移动。
而球体是 3D 的,想象成水球,你可以在里面游来游去(3D 式移动)

Tangent Spaces as the Velocity of Curves

假设我们有一个光滑流形 M M M 和曲线上的一个点 p ∈ M p \in M pM (我们用变量 p p p 代替点 x x x,因为我们要用 x x x 表示别的东西)。回想一下,我们有一个坐标图 φ : U → R n \varphi : U \to \mathbb{R}^n φ:URn,其中 U U U 是包含 p p p M M M 的开放子集。

现在我们定义一条光滑的参数曲线 γ : t → M \gamma : t \to M γ:tM,它将参数 t ∈ [ a , b ] t \in [a,b] t[a,b] 映射到经过 p p p M M M。想象一下,在局部坐标下沿着这条曲线行走,也就是说,在应用图表之后,得到: φ ∘ γ : t → R n \varphi \circ \gamma : t \to \mathbb{R}^n φγ:tRn

看,此时不是用欧式空间当作安装坐标系的工具了。而是 “参数方程”,之所以加引号,是因为它不准确,因为这里可没有说 γ ( t ) \gamma(t) γ(t) 代表了欧式空间的各个坐标,它是个啥?咱不清楚,但你可以把它当作参数方程,比如对于圆, p = γ ( t ) :   x = [ γ ( t ) ] 1 ; y = [ γ ( t ) ] 2 p = \gamma(t):~ x=[γ(t)]_1; y=[γ(t)]_2 p=γ(t): x=[γ(t)]1;y=[γ(t)]2。但这不是必须的。

把局部坐标标记为 x = φ ∘ γ ( t ) \bm{x} = \varphi \circ \gamma(t) x=φγ(t),它是一个单参数的矢量函数,可以解释为流形上的 “位置” (在局部坐标中),是 t t t 的函数。因此,速度只是位置矢量相对于时间的瞬时变化率。所以在时间 t = t 0 t = t_0 t=t0 时,在点 p p p 处,我们有: [ ′ ′ v e l o c i t y ′ ′   a t   p ] = d φ ∘ γ ( t ) d t ∣ t = t 0 = [ d x 1 ( t ) d t , … , d x n ( t ) d t ] ∣ t = t 0 (7) [''velocity''~at~p] = \frac{d\varphi \circ \gamma(t)}{dt}|_{t=t_0} = \left [\frac{dx^1(t)}{dt}, \dots, \frac{dx^n(t)}{dt} \right] |_{t=t_0} \tag{7} [′′velocity′′ at p]=dtdφγ(t)t=t0=[dtdx1(t),,dtdxn(t)]t=t0(7) 其中 x i ( t ) x^i(t) xi(t) 是曲线在局部坐标下的第 i i i 个分量,在这种情况下,切向量 v \bm{v} v 只不过是 p p p 处的 “速度”。如果我们在 p p p 处取每一个可能的速度(通过指定不同的参数曲线),那么这些速度向量形成一个切空间,用 T p M T_pM TpM 表示。

Basis of the Tangent Space

虽然我们有一个在局部坐标系中指定的切向量,但它的基是什么?回想一下,一个向量有对应于特定基向量的坐标(标量的有序列表)。

???
是这些切向量的基吗?此时切向量表现为一个坐标 ( d x 1 ( t ) d t , d x 2 ( t ) d t , … , d x n ( t ) d t ) (\frac{dx^1(t)}{dt}, \frac{dx^2(t)}{dt}, \dots, \frac{dx^n(t)}{dt}) (dtdx1(t),dtdx2(t),,dtdxn(t)),且 manifold 已经被映射到欧式空间中,那么 basis 应该是欧式空间的基 { e i } \{\bm{e}_i\} {ei},即 v = ∑ i n ( d x i ( t ) d t ∗ e i ) \bm{v} = \sum_i^n (\frac{dx^i(t)}{dt} * \bm{e}_i) v=in(dtdxi(t)ei)
但看下文,好像不是这么回事
按理来说,一个 chart 一个基,它是坐标系哎,坐标轴不就是基嘛?

为了理解如何构造切空间基,我们首先定义一个任意函数 f : M → R f : M \to \mathbb{R} f:MR,并假设仍然有平滑参数曲线 γ : t → M \gamma : t \to M γ:tM。看看相对于这个测试函数的 “速度” 的一个新定义 d f ∘ γ ( t ) d t ∣ t = t 0 \frac{df \circ \gamma(t)}{dt}|_{t=t_0} dtdfγ(t)t=t0 是函数 f f f 沿着这条曲线的变化率

  • 就感觉很奇怪,我是觉得:基应该就是坐标系的基,却又为何 construct?
  • 定义了一个新的 “速度”,起码目前来看,像是前面所定义速度的一个分量。

然而,我们可以通过在 “速度” 的度量中引入一个图表 ( φ ) (φ) (φ) 和它的逆 ( φ − 1 ) (φ^{−1}) (φ1) 来做一个 “技巧”: d f ∘ γ ( t ) d t ∣ t = t 0 = d ( f ∘ φ − 1 ∘ φ ∘ γ ) ( t ) d t ∣ t = t 0 = d [ ( f ∘ φ − 1 ) ∘ ( φ ∘ γ ) ] ( t ) d t ∣ t = t 0 = ∑ i ∂ ( f ∘ φ − 1 ) ∂ x i ∣ x = φ ∘ γ ( t 0 ) d ( φ ∘ γ ) i ( t ) d t ∣ t = t 0 c h a i n   r u l e = ∑ i ∂ ( f ∘ φ − 1 ) ∂ x i ∣ x = φ ( p ) d ( φ ∘ γ ) i ( t ) d t ∣ t = t 0 = ∑ i ( b a s i s   f o r   c o m p o n e n t   i ) ( ′ ′ v e l o c i t y ′ ′   o f   c o m p o n e n t   i   w r t   t o   φ ) (8) \begin{aligned} \frac{df \circ \gamma(t)}{dt}|_{t=t_0} &= \frac{d(f \circ \varphi^{-1} \circ \varphi \circ \gamma)(t)}{dt}|_{t=t_0} \\ &= \frac{d[(f \circ \varphi^{-1}) \circ (\varphi \circ \gamma)](t)}{dt}|_{t=t_0} \\ &= \sum_i \frac{\partial (f \circ \varphi^{-1})} {\partial x^i}|_{x = \varphi \circ \gamma(t_0)} \frac{d(\varphi \circ \gamma)^i(t)}{dt}|_{t=t_0} \quad chain ~ rule \\ &= \sum_i \frac{\partial (f \circ \varphi^{-1})} {\partial x^i}|_{x = \varphi(p)} \frac{d(\varphi \circ \gamma)^i(t)}{dt}|_{t=t_0} \\ &= \sum_i (basis~for~component~i)(''velocity''~of~component~i~wrt~to~\varphi) \tag{8} \end{aligned} dtdfγ(t)t=t0=dtd(fφ1φγ)(t)t=t0=dtd[(fφ1)(φγ)](t)t=t0=ixi(fφ1)x=φγ(t0)dtd(φγ)i(t)t=t0chain rule=ixi(fφ1)x=φ(p)dtd(φγ)i(t)t=t0=i(basis for component i)(′′velocity′′ of component i wrt to φ)(8) 注意第三行引入了偏导数求和,这是多变量微积分链式法则的一个应用。可以看到通过引入这个测试函数和小技巧,我们得到了和方程 7 一样的速度,但是有了相应的基向量

这真是让人心力憔悴啊,一会儿这速度,一会儿那速度,到底是啥速度?于是找到了多年前的《高等数学》,翻看其中的方向导数和梯度等概念,以弄清 “速度1” d φ ∘ γ ( t ) d t ∣ t = t 0 \frac{d\varphi \circ \gamma(t)}{dt}|_{t=t_0} dtdφγ(t)t=t0“速度2” d f ∘ γ ( t ) d t ∣ t = t 0 \frac{df \circ \gamma(t)}{dt}|_{t=t_0} dtdfγ(t)t=t0 到底是什么,两者之间有何关系?先看数量场的概念:
在这里插入图片描述
在这里插入图片描述
=》给定一个流形,就拿几何体二维球面 S 2 :   F ( x , y , z ) = x 2 + y 2 + z 2 = r 2 S^2:~ F(x, y, z) = x^2 + y^2+ z^2 = r^2 S2: F(x,y,z)=x2+y2+z2=r2 来说吧,哎! F ( x , y , z ) F(x, y, z) F(x,y,z) 不就是定义在 S 2 S^2 S2 上的数量场吗!还是个常数量场
=》再看看 f : M → R f : M \to \mathbb{R} f:MR,它把流形 M M M 上的点映射为一个实数,那它也是数量场啊,只不过不是常数场了。如果赋予物理意义,会更好理解,我们可以把这个函数想象成:流形上的每一点 p ∈ M p \in M pM 有一个叫球面质量密度的数值 f ( p ) = f ∘ γ ( t ) f(p) = f \circ \gamma(t) f(p)=fγ(t),每处密度可能不同,且变化连续。那么 d f ∘ γ ( t ) d t ∣ t = t 0 \frac{df \circ \gamma(t)}{dt}|_{t=t_0} dtdfγ(t)t=t0 的物理意义就是:密度沿曲线 γ ( t ) \gamma(t) γ(t) p ∣ t = t 0 p|_{t=t_0} pt=t0 处随 t t t 的变化率,即 “速度2”。
=》而 φ ∘ γ : t → M → R n \varphi \circ \gamma: t \to M \to \mathbb{R}^n φγ:tMRn 则是把 t t t 映射至了欧式空间,拿 S 2 S^2 S2 来说,映射至了三维欧氏空间 R 3 \mathbb{R}^3 R3,则此时 d φ ∘ γ ( t ) d t ∣ t = t 0 = [ d x ( t ) d t , d y ( t ) d t , d z ( t ) d t ] ∣ t = t 0 \frac{d\varphi \circ \gamma(t)}{dt}|_{t=t_0} = \left [\frac{dx(t)}{dt}, \frac{dy(t)}{dt}, \frac{dz(t)}{dt} \right] |_{t=t_0} dtdφγ(t)t=t0=[dtdx(t),dtdy(t),dtdz(t)]t=t0 是曲线在 p ∣ t = t 0 p|_{t=t_0} pt=t0 处的切向量,也即曲线的方向。而对于 “速度2” d f ∘ γ ( t ) d t ∣ t = t 0 = ∑ i ∂ ( f ∘ φ − 1 ) ∂ x i ∣ x = φ ( p ) d ( φ ∘ γ ) i ( t ) d t ∣ t = t 0 \begin{aligned} \frac{df \circ \gamma(t)}{dt}|_{t=t_0} = \sum_i \frac{\partial (f \circ \varphi^{-1})} {\partial x^i}|_{x = \varphi(p)} \frac{d(\varphi \circ \gamma)^i(t)}{dt}|_{t=t_0} \end{aligned} dtdfγ(t)t=t0=ixi(fφ1)x=φ(p)dtd(φγ)i(t)t=t0 来说, d φ ∘ γ ( t ) d t ∣ t = t 0 \frac{d\varphi \circ \gamma(t)}{dt}|_{t=t_0} dtdφγ(t)t=t0方向(欧式空间中), ∂ ( f ∘ φ − 1 ) ∂ x i ∣ x = φ ( p ) \frac{\partial (f \circ \varphi^{-1})} {\partial x^i}|_{x = \varphi(p)} xi(fφ1)x=φ(p) 是我们熟悉的梯度。梯度在某方向的投影是方向导数。这也是梯度下降法选取方向的依据:在梯度的方向投影最大(下降速度最快)。
=》所以,也许 d φ ∘ γ ( t ) d t ∣ t = t 0 \frac{d\varphi \circ \gamma(t)}{dt}|_{t=t_0} dtdφγ(t)t=t0 称为 “速度” 本身就不是太合适,它只是梯度投影的方向,即 “位置” t t t 变化的方向(速度)。而 d f ∘ γ ( t ) d t ∣ t = t 0 \frac{df \circ \gamma(t)}{dt}|_{t=t_0} dtdfγ(t)t=t0 才是有意义的场量随 t t t 变化的速度。
=》结论是:“速度1”位置变化的速度“速度2”场量变化的速度。关系是:梯度投影到 “速度1” 得到 “速度2”。

好了,接下来的部分会有点奇怪,但请耐心听我说。我们将这个基底重新写成这样: ( ∂ ∂ x i ) p ( f ) : = ∂ ( f ∘ φ − 1 ) ( φ ( p ) ) ∂ x i (9) \begin{aligned} (\frac{\partial}{\partial x^i})_p (f) := \frac{\partial (f \circ \varphi^{-1}) (\varphi(p))} {\partial x^i} \tag{9} \end{aligned} (xi)p(f):=xi(fφ1)(φ(p))(9) 它只是为基定义了一些新的符号。重要的是,LHS 中现在没有 φ \varphi φ 了,但为什么呢?有一个约定, φ \varphi φ 是由 x i x^i xi 隐式表示的。如果你有另一个图,比如 ϑ \vartheta ϑ,那么你用 y i y^i yi 标记它的局部坐标。

再看另一件事: f f f 是什么?它是某个测试函数,是任意的。事实上,它太任意了,我们要把它去掉!对于切向量 v ∈ T p M v \in T_pM vTpM,有: v = ∑ i n v ( x i ) ⋅ ( ∂ ∂ x i ) p = ∑ i n d ( φ ∘ γ ) i ( t ) d t ⋅ ( ∂ ∂ x i ) p (10) \begin{aligned} \bm{v} &= \sum_i^n v(x^i) \cdot (\frac{\partial}{\partial x^i})_p \\ &= \sum_i^n \frac{d (\varphi \circ \gamma)^i (t)} {dt} \cdot (\frac{\partial}{\partial x^i})_p \tag{10} \end{aligned} v=inv(xi)(xi)p=indtd(φγ)i(t)(xi)p(10) 结果表明基实际上是一组微分算子,它们构成了一个向量空间!记住,一个向量空间不需要是我们通常的欧几里德向量,它们可以是任何满足向量空间性质的东西包括微分算子!如果你不习惯这些抽象的定义,还真有点令人费解。

等等!刚知道到底哪个才是速度,这又来一个问题:到底什么是切向量?是 v = d φ ∘ γ ( t ) d t ∣ t = t 0 v = \frac{d\varphi \circ \gamma(t)}{dt}|_{t=t_0} v=dtdφγ(t)t=t0?还是 v = ∑ i n v ( x i ) ⋅ ( ∂ ∂ x i ) p \bm{v} = \sum_i^n v(x^i) \cdot (\frac{\partial}{\partial x^i})_p v=inv(xi)(xi)p?还是 d f ∘ γ ( t ) d t ∣ t = t 0 = ∑ i ∂ ( f ∘ φ − 1 ) ∂ x i ∣ x = φ ( p ) d ( φ ∘ γ ) i ( t ) d t ∣ t = t 0 \frac{df \circ \gamma(t)}{dt}|_{t=t_0} = \sum_i \frac{\partial (f \circ \varphi^{-1})} {\partial x^i}|_{x = \varphi(p)} \frac{d(\varphi \circ \gamma)^i(t)}{dt}|_{t=t_0} dtdfγ(t)t=t0=ixi(fφ1)x=φ(p)dtd(φγ)i(t)t=t0?还都用 v v v 表示!着实令人头疼!于是开始扒拉《微分流形初步》一书,来看切向量的定义
在这里插入图片描述
在这里插入图片描述
这里的定义说切向量是一个映射 v : C x ∞ → R v: C_x^\infty \to \mathbb{R} v:CxR,可以看出它的定义域是 C x ∞ C_x^\infty Cx(即无限可微函数),值域是 R \mathbb{R} R,哎! v = ∑ i n v ( x i ) ⋅ ( ∂ ∂ x i ) p \bm{v} = \sum_i^n v(x^i) \cdot (\frac{\partial}{\partial x^i})_p v=inv(xi)(xi)p 符合,也许这么写更好: v ( □ ) = ∑ i n v ( x i ) ⋅ ( ∂ □ ∂ x i ) p \bm{v}(\square) = \sum_i^n v(x^i) \cdot (\frac{\partial \square}{\partial x^i})_p v()=inv(xi)(xi)p 方框代表了连续可微函数的空缺,它接收一个连续可微函数,输出一个实数。实锤了,就是它,求导操作
=》哈哈!这种求导操作都成向量了,能不懵逼吗!再加上博主说 “切向量 v ∈ T p M v \in T_pM vTpM”,就更懵逼了!那这个 “求导操作” 到底是不是向量?看博主说:“一个向量空间不需要是我们通常的欧几里德向量,它们可以是任何满足向量空间性质的东西,包括微分算子!” 且上面这个定义的(1)(2)也确实说明了这个 “求导操作” 满足向量的线性性质
=》 再回答 f f f 是什么?能是啥?类似质量密度之类的物理量皆可。上面说过,当把 f f f 看作密度时, d f ∘ γ ( t ) d t ∣ t = t 0 \frac{df \circ \gamma(t)}{dt}|_{t=t_0} dtdfγ(t)t=t0的意义是 “密度沿曲线 γ ( t ) \gamma(t) γ(t) p ∣ t = t 0 p|_{t=t_0} pt=t0 处随 t t t 的变化率”。如今 v ( □ ) \bm{v}(\square) v() 接收一个函数,那就是计算 “某个场量沿曲线 γ ( t ) \gamma(t) γ(t) p ∣ t = t 0 p|_{t=t_0} pt=t0 处随 t t t 的变化率”。

重磅!!! 上一节还说:“切向量 v v v 只不过是 p p p 处的 “速度”。” 这一节又说 v ( □ ) = ∑ i n v ( x i ) ⋅ ( ∂ □ ∂ x i ) p \bm{v}(\square) = \sum_i^n v(x^i) \cdot (\frac{\partial \square}{\partial x^i})_p v()=inv(xi)(xi)p 是切向量,还冒出来一组微分算子 { ( ∂ □ ∂ x i ) p } \{(\frac{\partial \square}{\partial x^i})_p\} {(xi)p} 作为基,到底在胡说些什么?久经挣扎,继续翻看《微分流形初步》终于找到了答案。书中有给出详细的过程以证明 { ( ∂ □ ∂ x i ) p } \{(\frac{\partial \square}{\partial x^i})_p\} {(xi)p} 是基,但有点绕,这里我只给出自己的简要理解。
=》既然说 { ( ∂ □ ∂ x i ) p } \{(\frac{\partial \square}{\partial x^i})_p\} {(xi)p} 是一组基,那就一个一个地看看吧。 ( ∂ □ ∂ x i ) p = ∑ j n v ( x j ) ⋅ ( ∂ □ ∂ x j ) p ∣ [ v = e i ] (\frac{\partial \square}{\partial x^i})_p = \sum_j^n v(x^j) \cdot (\frac{\partial \square}{\partial x^j})_p|_{[v=\bm{e}_i]} (xi)p=jnv(xj)(xj)p[v=ei] 其中 e i \bm{e}_i ei 是对应欧式空间的第 i i i 个单位基向量。也就是说,每个 ( ∂ □ ∂ x i ) p (\frac{\partial \square}{\partial x^i})_p (xi)p 对应一个 e i \bm{e}_i ei,那么当 v ∈ T p M v \in T_pM vTpM 是任意切向量时,也就对应着 ∑ i n v ( x i ) ⋅ ( ∂ □ ∂ x i ) p \sum_i^n v(x^i) \cdot (\frac{\partial \square}{\partial x^i})_p inv(xi)(xi)p 咯!
=》这么说还不是很清楚,毕竟没讲关于曲线的事。那就讲一讲。假设,流形上一点 p ∈ M p \in M pM,被 φ ∘ γ ( t ) ∣ t = t 0 \varphi \circ \gamma(t)|_{t=t_0} φγ(t)t=t0 映射至欧式空间 R n \mathbb{R}^n Rn 中的点 x \bm{x} x,即 x = φ ∘ γ ( t ) ∣ t = t 0 \bm{x} = \varphi \circ \gamma(t)|_{t=t_0} x=φγ(t)t=t0,而此时, [ ′ ′ v e l o c i t y ′ ′   a t   p ] = d φ ∘ γ ( t ) d t ∣ t = t 0 = [ d x 1 ( t ) d t , … , d x n ( t ) d t ] ∣ t = t 0 [''velocity''~at~p] = \frac{d\varphi \circ \gamma(t)}{dt}|_{t=t_0} = \left [\frac{dx^1(t)}{dt}, \dots, \frac{dx^n(t)}{dt} \right] |_{t=t_0} [′′velocity′′ at p]=dtdφγ(t)t=t0=[dtdx1(t),,dtdxn(t)]t=t0,若曲线在 x \bm{x} x 处平行于数轴 i i i,则 d φ ∘ γ ( t ) d t ∣ t = t 0 = [ 0 , … , 0 , d x i ( t ) d t , 0 , … , 0 ] ∣ t = t 0 = e i \frac{d\varphi \circ \gamma(t)}{dt}|_{t=t_0} = \left [0, \dots, 0, \frac{dx^i(t)}{dt}, 0, \dots, 0 \right] |_{t=t_0} = \bm{e}_i dtdφγ(t)t=t0=[0,,0,dtdxi(t),0,,0]t=t0=ei【设选取的曲线可使 d x i ( t ) d t = 1 \frac{dx^i(t)}{dt} = 1 dtdxi(t)=1】,则切向量 v ( □ ) = ∑ i n v ( x i ) ⋅ ( ∂ □ ∂ x i ) p = ( ∂ □ ∂ x i ) p \begin{aligned} \bm{v}(\square) &= \sum_i^n v(x^i) \cdot (\frac{\partial \square}{\partial x^i})_p \\ &= (\frac{\partial \square}{\partial x^i})_p \end{aligned} v()=inv(xi)(xi)p=(xi)p x \bm{x} x 处找 n n n 个与各个坐标轴平行的曲线,不就得到了 { ( ∂ □ ∂ x i ) p } \{(\frac{\partial \square}{\partial x^i})_p\} {(xi)p}。且点 x \bm{x} x 处任何其他的的曲线对应的切向量都可由这组基表示。
=》总结:切向量确实是指 v ( □ ) \bm{v}(\square) v(),它由基 { ( ∂ □ ∂ x i ) p } \{(\frac{\partial \square}{\partial x^i})_p\} {(xi)p} 和向量坐标 d φ ∘ γ ( t ) d t \frac{d\varphi \circ \gamma(t)}{dt} dtdφγ(t) 求和而成,在基的前提下,自然可以说坐标 d φ ∘ γ ( t ) d t \frac{d\varphi \circ \gamma(t)}{dt} dtdφγ(t) 是切向量。就如同我们平时说的向量 [ 1 , 2 , 3 ] [1, 2, 3] [1,2,3],其实是在标准基 { e i } \{\bm{e}_i\} {ei} 下向量 1 ∗ e 1 + 2 ∗ e 2 + 3 ∗ e 3 1 * \bm{e}_1 + 2 * \bm{e}_2 + 3 * \bm{e}_3 1e1+2e2+3e3 的坐标,可以说这个坐标是向量一样。明白为什么说切向量 “ v ∈ T x M v \in T_xM vTxM” 了吧!
=》需要注意的是,对于点 p ∈ M p \in M pM,给定一个经过的曲线 γ ( t ) \gamma(t) γ(t) 和一个坐标图 φ \varphi φ切向量坐标 d φ ∘ γ ( t ) d t \frac{d\varphi \circ \gamma(t)}{dt} dtdφγ(t) 就定了,切向量基也确定了,故而切向量就确定了,而与数量场 f f f 无关【它被 □ \square 占位符了】。

Change of Basis for Tangent Vectors

有了切向量的一组基,我们想知道如何在它们之间进行基变换。先为 d d d 维流形 M M M 安装两个图: φ ( p ) = ( x 1 ( p ) , … , x d ( p ) ) ϑ ( p ) = ( y 1 ( p ) , … , y d ( p ) ) (11) \begin{aligned} \varphi(p) = (x^1(p), \dots, x^d(p)) \\ \vartheta(p) = (y^1(p), \dots, y^d(p)) \tag{11} \end{aligned} φ(p)=(x1(p),,xd(p))ϑ(p)=(y1(p),,yd(p))(11) 其中 x i ( p ) x^i(p) xi(p) y i ( p ) y^i(p) yi(p) 是坐标函数。假设 p p p 在两个图的定义域的重叠处。现在看一下如何从一个图表中的切空间转换到另一个图表中。

(更方便的偏导数符号: ∂ x f : = ∂ f ∂ x \partial_x f := \frac{\partial f}{\partial x} xf:=xf,这只是更简洁一点。)

将方程 10 的求和作用于测试函数 f f f v ( f ) = v ( x i ) ⋅ ( ∂ ∂ x i ) p ( f ) = v ( x i ) ⋅ ∂ x i ( f ∘ φ − 1 ) ( φ ( p ) ) b y   d e f i n i t i o n = v ( x i ) ⋅ ∂ x i ( f ∘ ϑ − 1 ∘ ϑ ∘ φ − 1 ) ( φ ( p ) ) i n t r o d u c e   ϑ   w i t h   i d e n t i t y   t r i c k = v ( x i ) ⋅ ∂ x i [ ( f ∘ ϑ − 1 ) ∘ ( ϑ ∘ φ − 1 ) ] ( φ ( p ) ) = v ( x i ) ⋅ ∂ x i ( ϑ ∘ φ − 1 ) j ( φ ( p ) ) ⋅ ∂ y j ( f ∘ ϑ − 1 ) ( ϑ ∘ φ − 1 ( φ ( p ) ) ) c h a i n   r u l e = v ( x i ) ⋅ ∂ x i ( ϑ ∘ φ − 1 ) j ( φ ( p ) ) ⋅ ∂ y j ( f ∘ ϑ − 1 ) ( ϑ ( p ) ) s i m p l i f y = v ( x i ) ⋅ ∂ x i ( ϑ ∘ φ − 1 ) j ( φ ( p ) ) ⋅ ( ∂ ∂ y j ) p ( f ) b y   d e f i n i t i o n = [ v ( x i ) ⋅ ∂ y j ∂ x i ∣ x = φ ( p ) ] ⋅ ( ∂ ∂ y j ) p ( f ) s i n c e   y j = y j ( φ − 1 ( φ ( x ) ) ) = v ( y j ) ⋅ ( ∂ ∂ y j ) p ( f ) (12) \begin{aligned} \bm{v}(f) &= v(x^i) \cdot (\frac{\partial}{\partial x^i})_p (f) & \\ &= v(x^i) \cdot \partial_{x^i}(f \circ \varphi^{-1})(\varphi(p)) & by ~ definition \\ &= v(x^i) \cdot \partial_{x^i}(f \circ \vartheta^{-1} \circ \vartheta \circ \varphi^{-1})(\varphi(p)) & introduce~\vartheta~with~identity~trick \\ &= v(x^i) \cdot \partial_{x^i}[(f \circ \vartheta^{-1}) \circ (\vartheta \circ \varphi^{-1})](\varphi(p)) & \\ &= v(x^i) \cdot \partial_{x^i}(\vartheta \circ \varphi^{-1})^j(\varphi(p)) \cdot \partial_{y^j}(f \circ \vartheta^{-1})(\vartheta \circ \varphi^{-1}(\varphi(p))) & chain~rule \\ &= v(x^i) \cdot \partial_{x^i}(\vartheta \circ \varphi^{-1})^j(\varphi(p)) \cdot \partial_{y^j}(f \circ \vartheta^{-1})(\vartheta(p)) & simplify \\ &= v(x^i) \cdot \partial_{x^i}(\vartheta \circ \varphi^{-1})^j(\varphi(p)) \cdot (\frac{\partial}{\partial y^j})_p (f) & by ~ definition \\ &= [v(x^i) \cdot \frac{\partial y^j}{\partial x^i}|_{x=\varphi(p)}] \cdot (\frac{\partial}{\partial y^j})_p (f) & since~y^j=y^j(\varphi^{-1}(\varphi(x))) \\ &= v(y^j) \cdot (\frac{\partial}{\partial y^j})_p (f) & \tag{12} \end{aligned} v(f)=v(xi)(xi)p(f)=v(xi)xi(fφ1)(φ(p))=v(xi)xi(fϑ1ϑφ1)(φ(p))=v(xi)xi[(fϑ1)(ϑφ1)](φ(p))=v(xi)xi(ϑφ1)j(φ(p))yj(fϑ1)(ϑφ1(φ(p)))=v(xi)xi(ϑφ1)j(φ(p))yj(fϑ1)(ϑ(p))=v(xi)xi(ϑφ1)j(φ(p))(yj)p(f)=[v(xi)xiyjx=φ(p)](yj)p(f)=v(yj)(yj)p(f)by definitionintroduce ϑ with identity trickchain rulesimplifyby definitionsince yj=yj(φ1(φ(x)))(12)

其中的 ϑ ∘ φ − 1 \vartheta \circ \varphi^{-1} ϑφ1 就是前面说的坐标系之间的变换: y = ϑ ∘ φ − 1 ( x ) \bm{y} = \vartheta \circ \varphi^{-1}(\bm{x}) y=ϑφ1(x)。那么: v ( y j ) = v ( x i ) ⋅ ∂ y j ∂ x i ∣ x = φ ( p ) ⇒ v ( y ) = J y v ( x ) \begin{aligned} v(y^j) = v(x^i) \cdot \frac{\partial y^j}{\partial x^i}|_{x=\varphi(p)} \Rightarrow \bm{v}(\bm{y}) = J_{\bm{y}} \bm{v}(\bm{x}) \end{aligned} v(yj)=v(xi)xiyjx=φ(p)v(y)=Jyv(x) 而对于场量 f ( p ) f(p) f(p),在新的坐标系下,它是: f ∘ ϑ − 1 ( y ) f \circ \vartheta^{-1}(y) fϑ1(y),基自然变成了 { ( ∂ ∂ y j ) p } \{(\frac{\partial}{\partial y^j})_p\} {(yj)p}。是不是比扯符号好理解多了。

在对符号进行了一番胡扯之后,可以看到基底的变换就是链式法则的一个应用。如果你仔细观察,你会发现基的变换矩阵就是 ϑ ( x ) = ( y 1 ( x ) , … , y d ( x ) ) \vartheta(x) = (y^1(x), \dots, y^d(x)) ϑ(x)=(y1(x),,yd(x)) 关于原始图表坐标 x i x^i xi (而不是流形点 p p p) 的雅可比矩阵 J J J。用矩阵表示法,会得到这样的东西: v ( y ) = [ v ( y 1 ) … v ( y d ) ] = J y v ( x ) = [ ∂ y 1 ∂ x 1 ∣ x = φ ( p ) … ∂ y 1 ∂ x d ∣ x = φ ( p ) ⋮ ⋱ ⋮ ∂ y d ∂ x 1 ∣ x = φ ( p ) … ∂ y d ∂ x d ∣ x = φ ( p ) ] [ v ( x 1 ) … v ( x d ) ] (13) \begin{aligned} \bm{v}(\bm{y}) = \begin{bmatrix} v(y^1)\\ \dots\\ v(y^d) \end{bmatrix} = J_{\bm{y}} \bm{v}(\bm{x}) = \begin{bmatrix} \frac{\partial y^1}{\partial x^1}|_{x=\varphi(p)} & \dots & \frac{\partial y^1}{\partial x^d}|_{x=\varphi(p)} \\ \vdots & \ddots & \vdots \\ \frac{\partial y^d}{\partial x^1}|_{x=\varphi(p)} & \dots & \frac{\partial y^d}{\partial x^d}|_{x=\varphi(p)} \end{bmatrix} \begin{bmatrix} v(x^1)\\ \dots\\ v(x^d) \end{bmatrix} \tag{13} \end{aligned} v(y)= v(y1)v(yd) =Jyv(x)= x1y1x=φ(p)x1ydx=φ(p)xdy1x=φ(p)xdydx=φ(p) v(x1)v(xd) (13) For those of you … see below with the metric tensor.【这一段我不翻译了,我读不懂。】

大概意思就是:切向量是随着坐标系的变化而变化的。如果坐标系逆向变换,则对雅可比矩阵求逆即可: v ( y ) = J y v ( x ) ⇔ J y − 1 v ( y ) = v ( x ) \bm{v}(\bm{y}) = J_{\bm{y}} \bm{v}(\bm{x}) \Leftrightarrow J_{\bm{y}}^{-1} \bm{v}(\bm{y}) = \bm{v}(\bm{x}) v(y)=Jyv(x)Jy1v(y)=v(x)

在所有这些操作之后,来看一个球面上的例子让事情变得更具体一些。

Example 4: Tangent Vectors on a Sphere

取单位球,定义一条曲线 γ ( t ) \gamma(t) γ(t) 与赤道平行,与赤道成 45 45 45 度角。图 8 为 θ = π 4 \theta = \frac{\pi}{4} θ=4π 的图。
在这里插入图片描述

图 8: 一个与赤道平行的圆,角度为 θ (来源:维基百科)

我们可以这样定义参数曲线: γ ( t ) = ( c o s π 4 c o s π t , c o s π 4 s i n π t , s i n π 4 ) , t ∈ [ − 1 , 1 ] (14) \begin{aligned} \gamma(t) = (cos\frac{\pi}{4}cos\pi t, cos\frac{\pi}{4}sin\pi t, sin\frac{\pi}{4}), t \in [-1, 1] \tag{14} \end{aligned} γ(t)=(cos4πcosπt,cos4πsinπt,sin4π),t[1,1](14) 注意到,根据三角恒等式 c o s 2 θ + s i n 2 θ = 1 cos^2θ + sin^2θ = 1 cos2θ+sin2θ=1 γ ( t ) \gamma(t) γ(t) 的各分量的平方和等于 1 1 1 。我们试着求出点 p = γ ( t 0 = 0 ) = ( x , y , z ) = ( 1 2 , 0 , 1 2 ) p=\gamma(t_0=0) = (x, y, z) = (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}) p=γ(t0=0)=(x,y,z)=(2 1,0,2 1) 处的切向量。

这里应该是 γ ( t ) = ( s i n π 4 c o s π t , s i n π 4 s i n π t , c o s π 4 ) , t ∈ [ − 1 , 1 ] \gamma(t) = (sin\frac{\pi}{4}cos\pi t, sin\frac{\pi}{4}sin\pi t, cos\frac{\pi}{4}), t \in [-1, 1] γ(t)=(sin4πcosπt,sin4πsinπt,cos4π),t[1,1] 吧。好在它们的值是一样的。

首先,根据公式 6,写下图表 φ \varphi φ 及其逆: u 1 ( x , y , z ) = x 1 − z u 2 ( x , y , z ) = y 1 − z x = 2 u 1 u 1 2 + u 2 2 + 1 y = 2 u 2 u 1 2 + u 2 2 + 1 z = u 1 2 + u 2 2 − 1 u 1 2 + u 2 2 + 1 (15) \begin{aligned} u_1(x, y, z) &= \frac{x}{1-z} \\ u_2(x, y, z) &= \frac{y}{1-z} \\ x &= \frac{2u_1}{u_1^2 + u_2^2 + 1} \\ y &= \frac{2u_2}{u_1^2 + u_2^2 + 1} \\ z &= \frac{u_1^2 + u_2^2 - 1}{u_1^2 + u_2^2 + 1} \\ \tag{15} \end{aligned} u1(x,y,z)u2(x,y,z)xyz=1zx=1zy=u12+u22+12u1=u12+u22+12u2=u12+u22+1u12+u221(15) 代入点 p = γ ( t 0 = 0 ) p =\gamma(t_0 = 0) p=γ(t0=0),得到 φ ( p ) = ( u 1 , u 2 ) = ( 2 + 1 , 0 ) \varphi(p) = (u_1, u_2) = (\sqrt{2} + 1, 0) φ(p)=(u1,u2)=(2 +1,0)

为了找到切空间中的坐标,使用公式 7: d φ ∘ γ ( t ) d t ∣ t = t 0 = [ d u 1 ( c o s π 4 c o s π t , c o s π 4 s i n π t , s i n π 4 ) d t , d u 2 ( c o s π 4 c o s π t , c o s π 4 s i n π t , s i n π 4 ) d t ] ∣ t = t 0 = [ d [ ( 2 + 1 ) c o s π t ] d t , d [ ( 2 + 1 ) s i n π t ] d t ] ∣ t = t 0 = ( 0 , ( 2 + 1 ) π ) (16) \begin{aligned} \frac{d\varphi \circ \gamma(t)}{dt}|_{t=t_0} &= \left[ \frac{du_1(cos\frac{\pi}{4}cos\pi t, cos\frac{\pi}{4}sin\pi t, sin\frac{\pi}{4})}{dt}, \frac{du_2(cos\frac{\pi}{4}cos\pi t, cos\frac{\pi}{4}sin\pi t, sin\frac{\pi}{4})}{dt} \right] |_{t=t_0} \\ &= \left[ \frac{d[(\sqrt{2} + 1)cos\pi t]}{dt}, \frac{d[(\sqrt{2} + 1)sin\pi t]}{dt} \right] |_{t=t_0} \\ &= (0, (\sqrt{2} + 1) \pi) \tag{16} \end{aligned} dtdφγ(t)t=t0=[dtdu1(cos4πcosπt,cos4πsinπt,sin4π),dtdu2(cos4πcosπt,cos4πsinπt,sin4π)]t=t0=[dtd[(2 +1)cosπt],dtd[(2 +1)sinπt]]t=t0=(0,(2 +1)π)(16) 结合微分算子作为基,切向量就变成了 T φ = 0 ⋅ ( ∂ ∂ u 1 ) p + ( 2 + 1 ) π ⋅ ( ∂ ∂ u 2 ) p (17) \begin{aligned} \bm{T}_\varphi = 0 \cdot (\frac{\partial}{\partial u_1})_p + (\sqrt{2} + 1) \pi \cdot (\frac{\partial}{\partial u_2})_p \tag{17} \end{aligned} Tφ=0(u1)p+(2 +1)π(u2)p(17) 接下来,计算由 “南极” 定义的坐标系下的切向量,(用 w i w_i wi 表示局部坐标): w 1 ( x , y , z ) = x 1 + z w 2 ( x , y , z ) = y 1 + z x = 2 w 1 w 1 2 + w 2 2 + 1 y = 2 w 2 w 1 2 + w 2 2 + 1 z = 1 − w 1 2 + w 2 2 w 1 2 + w 2 2 + 1 (18) \begin{aligned} w_1(x, y, z) &= \frac{x}{1+z} \\ w_2(x, y, z) &= \frac{y}{1+z} \\ x &= \frac{2w_1}{w_1^2 + w_2^2 + 1} \\ y &= \frac{2w_2}{w_1^2 + w_2^2 + 1} \\ z &= \frac{1 - w_1^2 + w_2^2}{w_1^2 + w_2^2 + 1} \\ \tag{18} \end{aligned} w1(x,y,z)w2(x,y,z)xyz=1+zx=1+zy=w12+w22+12w1=w12+w22+12w2=w12+w22+11w12+w22(18) 通过与上面相同的运算,可以找到点 p p p 关于 ϑ \vartheta ϑ 的切向量: T ϑ = 0 ⋅ ( ∂ ∂ w 1 ) p + ( 2 − 1 ) π ⋅ ( ∂ ∂ w 2 ) p (19) \begin{aligned} \bm{T}_\vartheta = 0 \cdot (\frac{\partial}{\partial w_1})_p + (\sqrt{2} - 1) \pi \cdot (\frac{\partial}{\partial w_2})_p \tag{19} \end{aligned} Tϑ=0(w1)p+(2 1)π(w2)p(19) 也可以通过公式 13 和 ϑ \vartheta ϑ 的雅可比矩阵直接求出 T ϑ \bm{T}_\vartheta Tϑ。要做到这一点,需要用 u j u_j uj 来表示 w i w_i wi w i ( u 1 , u 2 ) = w i ∘ φ − 1 ( u 1 , u 2 ) = w i ( 2 u 1 u 1 2 + u 2 2 + 1 , 2 u 2 u 1 2 + u 2 2 + 1 , u 1 2 + u 2 2 − 1 u 1 2 + u 2 2 + 1 ) = u i u 1 2 + u 2 2 (20) \begin{aligned} w_i(u_1, u_2) &= w_i \circ \varphi^{-1}(u_1, u_2) \\ &= w_i(\frac{2u_1}{u_1^2 + u_2^2 + 1}, \frac{2u_2}{u_1^2 + u_2^2 + 1}, \frac{u_1^2 + u_2^2 - 1}{u_1^2 + u_2^2 + 1}) \\ &= \frac{u_i}{u_1^2 + u_2^2} \tag{20} \end{aligned} wi(u1,u2)=wiφ1(u1,u2)=wi(u12+u22+12u1,u12+u22+12u2,u12+u22+1u12+u221)=u12+u22ui(20) 现在把这个值代入方程 13 中,通过直接从旧的图表转换得到相同的切向量,记住 φ ( p ) = ( u 1 , u 2 ) = ( 2 + 1 , 0 ) \varphi (p) = (u_1, u_2) = (\sqrt{2} + 1, 0) φ(p)=(u1,u2)=(2 +1,0) v ( w ) = J u v ( u ) = [ ∂ w 1 ∂ u 1 ∣ u = φ ( p ) ∂ w 1 ∂ u 2 ∣ u = φ ( p ) ∂ w 2 ∂ u 1 ∣ u = φ ( p ) ∂ w 2 ∂ u 2 ∣ u = φ ( p ) ] [ 0 ( 2 + 1 ) π ] = [ − ( 2 + 1 ) 2 ( 2 + 1 ) 4 0 0 ( 2 + 1 ) 2 ( 2 + 1 ) 4 ] [ 0 ( 2 + 1 ) π ] = [ 0 ( 2 − 1 ) π ] (21) \begin{aligned} \bm{v}(\bm{w}) &= J_{\bm{u}} \bm{v}(\bm{u}) \\ &= \begin{bmatrix} \frac{\partial w^1}{\partial u^1}|_{u=\varphi(p)} & \frac{\partial w^1}{\partial u^2}|_{u=\varphi(p)} \\ \frac{\partial w^2}{\partial u^1}|_{u=\varphi(p)} & \frac{\partial w^2}{\partial u^2}|_{u=\varphi(p)} \end{bmatrix} \begin{bmatrix} 0 \\ (\sqrt{2} + 1)\pi \end{bmatrix} \\ &= \begin{bmatrix} \frac{-(\sqrt{2} + 1)^2}{(\sqrt{2} + 1)^4} & 0 \\ 0 & \frac{(\sqrt{2} + 1)^2}{(\sqrt{2} + 1)^4} \end{bmatrix} \begin{bmatrix} 0 \\ (\sqrt{2} + 1)\pi \end{bmatrix} \\ &= \begin{bmatrix} 0 \\ (\sqrt{2} - 1)\pi \end{bmatrix} \tag{21} \end{aligned} v(w)=Juv(u)=[u1w1u=φ(p)u1w2u=φ(p)u2w1u=φ(p)u2w2u=φ(p)][0(2 +1)π]= (2 +1)4(2 +1)200(2 +1)4(2 +1)2 [0(2 +1)π]=[0(2 1)π](21) 它与上面公式 19 的坐标完全一致。

Riemannian Manifolds

即使知道如何在光滑流形上找到每个点的切空间,我们仍然不能做任何有趣的事情!如果要做点什么,就必须引入另一个特殊的张量,叫做 — 你猜对了— metric 张量!具体地,黎曼 metric (张量) 是一组内积: g p : T p M × T p M → R ,   p ∈ M (22) \begin{aligned} g_p: T_pM \times T_pM \to \mathbb{R}, ~ p \in M \tag{22} \end{aligned} gp:TpM×TpMR, pM(22) 使得 p → g p ( X ( p ) , Y ( p ) ) p \to g_p(X(p), Y(p)) pgp(X(p),Y(p)) 对于任意两个切向量 X ( p ) , Y ( p ) X(p), Y(p) X(p),Y(p) p p p 的光滑函数。注意这是一个 metric 张量族,也就是说,流形上的每个点都有不同的张量

p p p 变的时候,切向量不也得变吗?

这意味着,即使相邻的切空间可以是不同的,内积在相邻点之间平滑变化。具有黎曼 metric (张量)的实光滑流形称为黎曼流形。直观地说,黎曼流形具有我们想要的所有好的 “平滑” 属性。

可以明确,metric tensor 是函数 g p g_p gp,它接收两个切向量,输出一个实数。但是它随 p p p 的变化而平滑变化是什么意思?

看这段维基百科,说是 M M M 上有一个张量场 g g g,它给每点 p p p 配置一个 g p g_p gp,且 g p g_p gp p p p 平滑变化,即场 g g g 是关于 p p p 平滑变化。可这个张量是个函数啊,函数的函数?不懂!

Induced Metric Tensors

定义 metric 张量的一种很自然的方法是将 n n n 维流形 M M M 嵌入到 n + k n+k n+k 维欧式空间中,并使用 n + k n+k n+k 空间中的标准欧几里德 metric 张量,但将其转换到 M M M 上的局部坐标系中,也就是说,我们将使用嵌入欧式空间中的 metric 张量来定义黎曼 metric 张量族。这保证了很好的平滑性,因为我们是从嵌入空间的标准欧几里德 metric 中归纳出来的。

首先,弄清楚如何 n n n 维局部坐标中的切向量转换回 n + k n+k n+k 嵌入空间 x x x 表示嵌入空间坐标, y y y 表示局部坐标系,则: v ( □ ) = v ( y i ) ⋅ ∂ ( □ ∘ φ − 1 ) ∂ y i ∣ y = φ ( p ) = v ( y i ) ⋅ ∂ x j ∂ y i ∣ y = φ ( p ) ∂ □ ∂ x j ∣ x = p = v ( y i ) ⋅ ∂ x j ∂ y i ∣ y = φ ( p ) ( ∂ ∂ x j ) p = d γ j ( t ) d t ⋅ e j (23) \begin{aligned} \bm{v}(\square) &= v(y^i) \cdot \frac{\partial (\square \circ \varphi^{-1})}{\partial y^i}|_{y=\varphi(p)} \\ &= v(y^i) \cdot \frac{\partial x^{j}}{\partial y^i}|_{y=\varphi(p)} \frac{\partial \square}{\partial x^j}|_{x=p} \\ &= v(y^i) \cdot \frac{\partial x^{j}}{\partial y^i}|_{y=\varphi(p)} (\frac{\partial}{\partial x^j})_p \\ &= \frac{d\gamma^j(t)}{dt} \cdot \bm{e}^j \tag{23} \end{aligned} v()=v(yi)yi(φ1)y=φ(p)=v(yi)yixjy=φ(p)xjx=p=v(yi)yixjy=φ(p)(xj)p=dtdγj(t)ej(23) 这里添加了 “方框” 作为任意函数 f f f 的占位符。这只是简单地用了链式法则。嵌入空间中的基使用与局部坐标空间类似的基符号。事实上,我们可以利用 “速度” 的概念,用与公式 8 相同的方法推导出公式 23。

无论是在局部空间还是在嵌入空间中,它们都是相同的向量。所以我们可以直接求速度 d γ ( t ) d t \frac{d\gamma(t)}{dt} dtdγ(t)。另外, ( ∂ ∂ x j ) p (\frac{\partial}{\partial x^j})_p (xj)p 与嵌入空间的 R n + k \mathbb{R}^{n+k} Rn+k 是一对一的,所以我们也可以把它写成标准欧氏基向量 e j \bm{e}^j ej 的形式。

之后就可以计算出欧几里德 metric 张量在 p p p 点的局部切空间中是什么。假设 v M , w M \bm{v}_M, \bm{w}_M vM,wM 是在我们嵌入的欧式空间中表示的切向量, v U , w U \bm{v}_U, \bm{w}_U vU,wU 是在我们的局部坐标系中表示的相同向量: g M ( v M , w M ) = [ v ( y 1 ) … v ( y d ) ] [ ∂ x 1 ∂ y 1 ∣ y = φ ( p ) … ∂ x n ∂ y 1 ∣ y = φ ( p ) … ⋱ … ∂ x 1 ∂ y d ∣ y = φ ( p ) … ∂ x n ∂ y d ∣ y = φ ( p ) ] [ ∂ x 1 ∂ y 1 ∣ y = φ ( p ) … ∂ x 1 ∂ y d ∣ y = φ ( p ) … ⋱ … ∂ x n ∂ y 1 ∣ y = φ ( p ) … ∂ x n ∂ y d ∣ y = φ ( p ) ] [ w ( y i ) … w ( y d ) ] = v U ⊺ J x ⊺ J x w U = g ( v U , w U ) (24) \begin{aligned} &g_M(\bm{v}_M, \bm{w}_M) \\ &= \begin{bmatrix} v(y^1) \dots v(y^d) \end{bmatrix} \begin{bmatrix} \frac{\partial x^1} {\partial y^1}|_{y=\varphi(p)} &\dots &\frac{\partial x^n} {\partial y^1}|_{y=\varphi(p)} \\ \dots &\ddots &\dots \\ \frac{\partial x^1} {\partial y^d}|_{y=\varphi(p)} &\dots &\frac{\partial x^n} {\partial y^d}|_{y=\varphi(p)} \end{bmatrix} \begin{bmatrix} \frac{\partial x^1} {\partial y^1}|_{y=\varphi(p)} &\dots &\frac{\partial x^1} {\partial y^d}|_{y=\varphi(p)} \\ \dots &\ddots &\dots \\ \frac{\partial x^n} {\partial y^1}|_{y=\varphi(p)} &\dots &\frac{\partial x^n} {\partial y^d}|_{y=\varphi(p)} \end{bmatrix} \begin{bmatrix} w(y^i) \\ \dots \\ w(y^d) \end{bmatrix} \\ &= \bm{v}_U^\intercal \bm{J}_{\bm{x}}^\intercal \bm{J}_{\bm{x}} \bm{w}_U \\ &= g(\bm{v}_U, \bm{w}_U) \tag{24} \end{aligned} gM(vM,wM)=[v(y1)v(yd)] y1x1y=φ(p)ydx1y=φ(p)y1xny=φ(p)ydxny=φ(p) y1x1y=φ(p)y1xny=φ(p)ydx1y=φ(p)ydxny=φ(p) w(yi)w(yd) =vUJxJxwU=g(vU,wU)(24) g U = J x ⊺ J x g_U = \bm{J}_{\bm{x}}^\intercal \bm{J}_{\bm{x}} gU=JxJx 所以归纳内积只不过是雅可比矩阵与自身的矩阵积。注意这个与雅可比矩阵的乘法实际上是一个基变换。

现在有了 metric 张量,你可以计算各种好的东西比如长度,角度,面积。因为这篇文章太长了,所以我不会详细介绍它的工作原理。它与上面的例子非常相似,只要你能跟踪你在哪个坐标系中工作。

终究不知道怎么计算你说的这些东西!😅 算了,太耗精力了,这个微分流形着实奇怪,什么微分操作是向量,对这种向量求内积的操作是张量,还特么能随 p p p 平滑变化。滚吧!奇奇怪怪的!
如果真要计算这些东西的话,Wikipedia:Metric tensor 中似乎有介绍。


Update:Metirc Tensor


强迫症终究治不好,继续 ⇒ \Rightarrow

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
黎曼流形是微积分的一个分支,在数学和物理中起着重要的作用。它是一个具有黎曼度量的流形,黎曼度量是用于测量流形上的曲线或曲面弯曲程度的工具。黎曼度量是一个对称的二次型,它在每个切空间上定义了一个内积结构。这个内积结构允许我们定义曲线的长度和角度,并引入曲率的概念。 曲率是衡量流形弯曲程度的重要属性。在黎曼流形中,我们可以通过曲率张量来描述曲率。曲率张量是一个多维数组,它测量了相邻点上的切向量之间的变化。曲率张量的某些组合形式可以提供有关流形的重要几何性质的信息,例如曲面的高斯曲率和平均曲率。 黎曼流形还涉及其他重要的概念,如联络和测地线。联络是一种在流形上定义的切空间的导数操作。它允许我们在流形上定义平行移动和导数。测地线是没有加速度的曲线,也可以被认为是在流形上最短的路径。测地线可以用于研究质点在引力场中的运动以及光线在引力场中的传播。 黎曼流形的几何性质具有很大的应用价值。它们在物理学中的广义相对论中起着重要作用,用于描述时空的弯曲和引力。此外,它们还在数学领域中的拓扑学、微分几何学和偏微分方程等领域中发挥着重要作用。 总之,黎曼流形是一个重要的数学和物理学概念,用于描述流形的曲率和几何性质。它们在各种学科中都有广泛的应用,为我们理解和解释自然界中的现象提供了有力工具。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值