BatchNorm &LayerNorm

0. Abstract

很早以前就遇到了 BatchNormLayerNorm, 当时只是粗略地知道它们是对数据进行了标准化: x = x − μ σ \bm{x} = \frac{\bm{x} - \bm{\mu}}{\bm{\sigma}} x=σxμ 这当然很简单, 但实际的数据是比较复杂的. 对于 CV 任务的数据 image 而言, 一个 batch 的数据通常是这样的: [B, C, H, W]; 对于 NLP 任务的数据 sentence 而言, 一个 batch 的数据通常是这样的: [B, T, D]. 那 XXNorm 是怎么算的? 肯定不是一下算整个 batch 的所有数的 μ \bm{\mu} μ σ \bm{\sigma} σ, 且它们是有区别的.

于是查阅了很多资料, 真是应了导师的话: 别去看那些乱七八糟的博客, 他们水平还不如你呢! 还是老外厉害, 仅仅是在评论区回答问题就把问题讲得清清楚楚: 《Why do transformers use layer norm instead of batch norm?》

1. 如何计算?

本节从理论代码两个角度详细说明 BatchNormLayerNorm 的计算方式.

1.1 先从理论上说一下, 询问通义千问

>>>>> 通义千问 >>>>>
: layer norm 和 batch norm 的区别? 给出公式解释.

: Layer Normalization (LayerNorm)Batch Normalization (BatchNorm) 都是用于加速神经网络训练的技术, 通过规范化层的输入或激活值, 使网络的学习更加稳定和高效. 但是, 它们在实施方式适用场景上有所不同.

Batch Normalization (BatchNorm)
BatchNorm 主要在训练期间对一个 mini-batch 的数据进行规范化. 它的主要目标减少内部协变量移位(internal covariate shift), 即在网络的前向传播过程中, 中间层的输入分布随训练迭代而变化的现象. BatchNorm 通过计算当前 mini-batch 的均值和方差来规范化输入, 公式如下:
x \bm{x} x 是一个 mini-batch 内的输入向量, μ B \bm{\mu}_B μB σ B 2 \bm{\sigma}^2_B σB2 分别是该 mini-batch 的均值和方差, 则 BatchNorm 的输出 y \bm{y} y 可以表示为: x ^ = x − μ B μ B 2 + ϵ y ^ = γ x ^ + β \begin{aligned} \hat{\bm{x}} &= \frac{\bm{x} - \bm{\mu}_B}{\sqrt{\bm{\mu}_B^2 + \epsilon}} \\ \hat{\bm{y}} &= \gamma\hat{\bm{x}} + \beta \end{aligned} x^y^=μB2+ϵ xμB=γx^+β 其中, γ \gamma γ β \beta β 是可学习的参数, ϵ \epsilon ϵ 是一个很小的常数, 用于数值稳定性.

Layer Normalization (LayerNorm)
LayerNorm 目的是在每个样本级别上进行规范化, 而不依赖于 mini-batch 的统计信息. LayerNorm 更适用于序列模型(如 LSTMTransformer)等, 其中样本间可能存在依赖关系mini-batch 大小可能不是固定的. LayerNorm 计算每个样本特征的均值和方差, 公式如下:
x \bm{x} x 是单个样本的特征向量, μ L \bm{\mu}_L μL σ L 2 \bm{\sigma}^2_L σL2 分别是该样本特征的均值和方差, 则 LayerNorm 的输出 y \bm{y} y 可以表示为: x ^ = x − μ L μ L 2 + ϵ y ^ = γ x ^ + β \begin{aligned} \hat{\bm{x}} &= \frac{\bm{x} - \bm{\mu}_L}{\sqrt{\bm{\mu}_L^2 + \epsilon}} \\ \hat{\bm{y}} &= \gamma\hat{\bm{x}} + \beta \end{aligned} x^y^=μL2+ϵ xμL=γx^+β 这里同样, γ \gamma γ β \beta β 是可学习的参数, ϵ \epsilon ϵ 是一个很小的常数.

区别

  • 依赖于数据: BatchNorm 依赖于 mini-batch 的统计信息, 而 LayerNorm 依赖于单个样本的特征统计信息;
  • 应用场景: BatchNorm 更适用于计算机视觉任务, 而 LayerNorm 更适用于自然语言处理任务, 尤其是在处理序列数据时;
  • 计算效率: BatchNorm 在并行计算上可能更高效, 因为它可以利用 mini-batch 内的并行性, 而 LayerNorm 在每个样本上的计算独立, 更适合处理不同长度的序列数据.

这两种方法各有优劣, 选择哪种方法通常取决于具体的应用场景和数据特性.
<<<<< 通义千问 <<<<<

清楚了吗? 迷迷糊糊, 什么叫做 “当前 mini-batch 的均值和方差”? 什么叫做 “每个样本特征的均值和方差”? 还是老外回答的好:

先搞清基本概念:

  • instance: 一个样本, image for CV, sentence for NLP;
  • element: 样本的组件, pixel for image, word for sentence;
  • feature: element 的特征, RGB 值 for pexel, embedding for word.

体现到数据上就是:

  • [B, C, H, W] 是一个 batch, [C, H, W] 是一个 instance, [C] 是一个 pixel, 包含了 C 个 feature.
  • [B, T, L] 是一个 batch, [T, L] 是一个 instance, [L] 是一个 word, 包含了 L 个 feature.

如下图:

从 Batch Dimension 那一侧看, 每个小方格往背后延申代表一个 element, 如左图中的紫色长条, 一个 pixel 的 RGB 特征, 或者一个词向量. LayerNorm每个 element 计算均值和方差, 可得 BxL 个均值和方差(或BxHxW个). 然后各 element 独立地进行标准化. 右图中的紫色片是一个 feature, 批次中所有 word 的第一个 feature. 每一个这样的片是一个特征, BatchNorm每个 feature 计算均值和方差, 可得 L 个均值和方差(或C个). 然后各 feature 独立地进行标准化.


需要注意的是, Transformer 中并不是按上面所说的 LayerNorm 计算的, 而是给每个 instance 计算均值和方差, 可得 B 个均值和方差, 然后各 instance 独立地进行标准化. 确切说是下图的样子:

1.2 PyTorch 中的 BatchNormLayerNorm
1.2.1 BatchNorm

在 PyTorch 中, BatchNormnn.BatchNorm1d, nn.BatchNorm2dnn.BatchNorm3d, 分别针对不同维度的数据:

  • nn.BatchNorm1d: (N, C) or (N, C, L)
  • nn.BatchNorm2d: (N, C, H, W)
  • nn.BatchNorm3d: (N, C, D, H, W)

查看源码:

class BatchNorm1d(_BatchNorm):
	r"""
	Args:
		num_features: number of features or channels `C` of the input

	Shape:
		- Input: `(N, C)` or `(N, C, L)`, where `N` is the batch size,
		  `C` is the number of features or channels, and `L` is the sequence length
		- Output: `(N, C)` or `(N, C, L)` (same shape as input)
	"""
	def _check_input_dim(self, input):
		if input.dim() != 2 and input.dim() != 3:
			raise ValueError(f"expected 2D or 3D input (got {input.dim()}D input)")

Examples:

>>> m = nn.BatchNorm1d(100)  # C=100	   # With Learnable Parameters
>>> m = nn.BatchNorm1d(100, affine=False)  # Without Learnable Parameters
>>> input = torch.randn(20, 100)  # (N, C)
>>> output = m(input)
>>> # 或者
>>> input = torch.randn(20, 100, 30)  # (N, C, L)
>>> output = m(input)

γ , β \bm{\gamma}, \bm{\beta} γ,β 是可学习的参数, 且 shape=(C,), 参数名是 .weight.bias:

>>> m = nn.BatchNorm1d(100)
>>> m.weight
Parameter containing:
tensor([1., 1., ..., 1.], requires_grad=True) 
>>> m.weight.shape
torch.Size([100])
>>> m.bias
Parameter containing:
tensor([0., 0., ..., 0.], requires_grad=True)

BatchNorm2dBatchNorm3d 是一样的, 不同之处在于 _check_input_dim(input):

class BatchNorm2d(_BatchNorm):
	r"""
	Args:
		num_features: `C` from an expected input of size `(N, C, H, W)`
	Shape:
		- Input: :math:`(N, C, H, W)`
		- Output: :math:`(N, C, H, W)` (same shape as input)
	"""
	def _check_input_dim(self, input):
		if input.dim() != 4:
			raise ValueError(f"expected 4D input (got {input.dim()}D input)")

Examples:

>>> m = nn.BatchNorm2d(100)
>>> input = torch.randn(20, 100, 35, 45)
>>> output = m(input)
class BatchNorm3d(_BatchNorm):
	r"""
	Args:
		num_features: `C` from an expected input of size `(N, C, D, H, W)`
	Shape:
		- Input: :math:`(N, C, D, H, W)`
		- Output: :math:`(N, C, D, H, W)` (same shape as input)
	"""
	def _check_input_dim(self, input):
		if input.dim() != 5:
			raise ValueError(f"expected 5D input (got {input.dim()}D input)")

Examples:

>>> m = nn.BatchNorm3d(100)
>>> input = torch.randn(20, 100, 35, 45, 10)
>>> output = m(input)
1.2.2 LayerNorm

不同于 BatchNorm(num_features), LayerNorm(normalized_shape)参数是 input.shape 的后 xdim, 如 [B, T, L] 的后两维 [T, L], 则每个句子会被独立地标准化; 若 L[L], 则每个词向量被独立地标准化.

NLP Example

>>> batch, sentence_length, embedding_dim = 20, 5, 10
>>> embedding = torch.randn(batch, sentence_length, embedding_dim)
>>> layer_norm = nn.LayerNorm(embedding_dim)
>>> layer_norm(embedding)  # Activate module

Image Example

>>> N, C, H, W = 20, 5, 10, 10
>>> input = torch.randn(N, C, H, W)
>>> # Normalize over the last three dimensions (i.e. the channel and spatial dimensions)
>>> layer_norm = nn.LayerNorm([C, H, W])
>>> output = layer_norm(input)

也就是说, 它不仅仅包含了上面理论计算所说的 “各 element 独立地进行标准化” 和 “各 instance 独立地进行标准化”, 而且可以计算任何的 normalize over the last x dimensions.

1.3 计算过程考察
import torch
from torch import nn

# >>> 手动计算 BatchNorm2d >>>
weight = torch.ones([1, 3, 1, 1])
bias = torch.zeros([1, 3, 1, 1])

x = 10 * torch.randn(2, 3, 4, 4) + 100
mean = x.mean(dim=[0, 2, 3], keepdim=True)
std = x.std(dim=[0, 2, 3], keepdim=True, unbiased=False)
print(x)
print(mean)
print(std)

y = (x - mean) / std
y = y * weight + bias
print(y)
# <<< 手动计算 BatchNorm2d <<<

# >>> nn.BatchNorm2d >>>
bnm2 = nn.BatchNorm2d(3)
z = bnm2(x)
print(z)
# <<< nn.BatchNorm2d <<<
print(torch.norm(z - y, p=1))

会发现手动计算和 nn.BatchNorm 计算的几乎完全一致, 可能是有一些 ϵ \epsilon ϵ 的影响吧. 注意, 这里的 unbiased=False 有讲究, 官方文档有说明:

"""
At train time in the forward pass, the standard-deviation is calculated via the biased estimator,
equivalent to `torch.var(input, unbiased=False)`.
However, the value stored in the moving average of the standard-deviation is calculated via
the unbiased  estimator, equivalent to `torch.var(input, unbiased=True)`.

Also by default, during training this layer keeps running estimates of its computed mean and
variance, which are then used for normalization during evaluation.
"""

这里只是想验证计算过程, 不重点关注 unbiased. 简单地提一下:

  • training 阶段计算的是方差的有偏估计, 而存在方差的 moving average 中的方差是无偏估计;
  • during training, 会保存 mean 和 var 的滑动平均, 然后用于 testing 阶段.

2. Why?

Layer Normalization 对所有的特征进行缩放, 这显得很没道理. 我们算出一行这 [身高, 体重, 年龄] 三个特征的均值方差并对其进行缩放,事实上会因为特征的量纲不同而产生很大的影响. 但是, 这一维度一般为词向量的维度, 或者是 RNN 的输出维度等等, 各个特征的量纲应该相同. 因此也不会遇到上面因为特征的量纲不同而导致的缩放问题.

经过归一化再输入 sigmoid 激活函数, 得到的值大部分会落入线性区, 导数远离导数饱和区,避免了梯度消失, 这样来加速训练收敛过程.

  • 10
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值