tensorflow 中的学习率衰减

在对一个模型进行训练时,通常建议随着训练的进行降低学习率,前期快速优化后期稳步收敛。设当前训练步数为 g l o b a l _ s t e p global\_step global_step,初始学习率为 l e a r n i n g _ r a t e learning\_rate learning_rate 则学习率为:

c u r r e n t _ l r = d e c a y _ f u n ( l e a r n i n g _ r a t e , g l o b a l _ s t e p , θ ) current\_lr = decay\_fun(learning\_rate, global\_step, \theta) current_lr=decay_fun(learning_rate,global_step,θ)

衰减策略由函数 d e c a y _ f u n decay\_fun decay_fun 决定,其中 θ \theta θ 为其他一些相关参数。

1. exponential_decay(指数衰减)

tf.train.exponential_decay(
    learning_rate,   # 初始学习率
    global_step,
    decay_steps,     # 指数函数的指数增长快慢
    decay_rate,      # 衰减率系数(指数函数的底数)
    staircase=False, # 是否是阶梯型衰减,默认是 False
    name=None
)

learning_rate 为初始值,学习率随 global_step 的增长呈指数下降,下降速度由 decay_rate(底数)和 decay_steps(决定指数增长速度)决定。公式:

c u r r e n t _ l r = l e a r n i n g _ r a t e ∗ p o w ( d e c a y _ r a t e , g l o b a l _ s t e p d e c a y _ s t e p s ) current\_lr = learning\_rate * pow(decay\_rate, \frac{global\_step}{decay\_steps}) current_lr=learning_ratepow(decay_rate,decay_stepsglobal_step)

staircase=True,则 g l o b a l _ s t e p d e c a y _ s t e p s \frac{global\_step}{decay\_steps} decay_stepsglobal_step 取整数,学习率阶梯式下降(每隔 d e c a y _ s t e p s decay\_steps decay_steps 步下降一次),否则每一步都衰减。

使用示例:

import matplotlib.pyplot as plt
import tensorflow as tf

global_step = tf.Variable(0, name='global_step', trainable=False)
learning_rate_1 = tf.train.exponential_decay(  # 阶梯型衰减
	learning_rate=0.6, global_step=global_step, decay_steps=10,
	decay_rate=0.6,
	staircase=True
)
learning_rate_2 = tf.train.exponential_decay(  # 步步衰减
	learning_rate=0.6, global_step=global_step, decay_steps=10,
	decay_rate=0.6,
	staircase=False
)
add1 = tf.assign_add(global_step, 1)

steps, lrs_1, lrs_2 = [], [], []
with tf.Session() as sess:
	sess.run(tf.global_variables_initializer())
	for _ in range(60):
		current_step, current_lr_1, current_lr_2, _ = sess.run([global_step, learning_rate_1, learning_rate_2, add1])
		steps.append(current_step)
		lrs_1.append(current_lr_1)
		lrs_2.append(current_lr_2)

plt.plot(steps, lrs_1, 'r-', linewidth=2)
plt.plot(steps, lrs_2, 'g-', linewidth=2)
plt.title('exponential_decay')
plt.show()

学习率变化图1

exponential_decay 学习率衰减

红线表示阶梯式衰减(starecase=True),绿线表示步步衰减(starecase=False)。

2. piecewise_constant(分段常数衰减)

tf.train.piecewise_constant(
    x,           # global_step
    boundaries,  # List[int],更新学习率的 step 边界
    values,      # lr_list,[base_lr, lr1, lr2, ...]
    name=None    # Defaults to 'PiecewiseConstant' 
)

人工指定学习率在哪些 step 衰减为何值。需提供额外参数:衰减步列表(boundaries),学习率列表(values)。


公式不好描述,用一个示意图表示 piecewise_constant

这个图中,线上是 current_lr,线下是 global_step,参数为

boundaries = [10, 20, 30, 40, 50]
values = [0.06, 0.05, 0.04, 0.03, 0.02, 0.01]

使用示例:

import matplotlib.pyplot as plt
import tensorflow as tf

global_step = tf.Variable(0, name='global_step', trainable=False)
learning_rate = tf.train.piecewise_constant(
	x=global_step,
	boundaries=[10, 20, 30, 40, 50],
	values=[0.06, 0.05, 0.04, 0.03, 0.02, 0.01]
)
add1 = tf.assign_add(global_step, 1)

steps, lrs = [], []
with tf.Session() as sess:
	sess.run(tf.global_variables_initializer())
	for _ in range(60):
		current_step, current_lr, _ = sess.run([global_step, learning_rate, add1])
		steps.append(current_step)
		lrs.append(current_lr)

plt.plot(steps, lrs, 'r-', linewidth=2)
plt.title('inverse_time_decay')
plt.show()

piecewise_constant

inverse_time_decay 学习率衰减

3. polynomial_decay(多项式衰减)

tf.train.polynomial_decay(
    learning_rate,  # 初始学习率
    global_step,
    decay_steps,  # 从 learning_rate 衰减到 end_learning_rate 的步数
    end_learning_rate=0.0001,  # 学习率更新到此停止
    power=1.0,   # 多项式指数,默认是线性的,取值为 1
    cycle=False, # 当超过 decay_steps 后是否循环执行
    name=None
)

学习率以 decay_steps 步,从 learning_rate 按多项式衰减到 end_learning_rate,当 cycle=True 时循环衰减。多项式为:

c u r r e n t _ l r = ( l e a r n i n g _ r a t e − e n d _ l e a r n i n g _ r a t e ) ∗ p o w ( 1 − g l o b a l _ s t e p d e c a y _ s t e p s , p o w e r ) + e n d _ l e a r n i n g _ r a t e \begin{aligned} current\_lr &= (learning\_rate - end\_learning\_rate) * pow(1 - \frac{global\_step}{decay\_steps}, power) \\ &+ end\_learning\_rate \end{aligned} current_lr=(learning_rateend_learning_rate)pow(1decay_stepsglobal_step,power)+end_learning_rate

如果 cycle=False,则 g l o b a l _ s t e p = m i n ( g l o b a l _ s t e p , d e c a y _ s t e p s ) global\_step = min(global\_step, decay\_steps) global_step=min(global_step,decay_steps)
如果 cycle=True,则 d e c a y _ s t e p s = d e c a y _ s t e p s ∗ c e i l ( g l o b a l _ s t e p / d e c a y _ s t e p s ) decay\_steps = decay\_steps * ceil(global\_step / decay\_steps) decay_steps=decay_stepsceil(global_step/decay_steps),(从实验观察看,这个 d e c a y _ s t e p s decay\_steps decay_steps 不是递归的, c e i l ceil ceil 里的 d e c a y _ s t e p s decay\_steps decay_steps 是实参提供的初始的 d e c a y _ s t e p s decay\_steps decay_steps)。所以[1]所说的周期变大理解是错误的,该博主理解成了递归。

使用示例:

import matplotlib.pyplot as plt
import tensorflow as tf

global_step = tf.Variable(0, name='global_step', trainable=False)
learning_rate_1 = tf.train.polynomial_decay(  # 非周期衰减
	learning_rate=0.102, global_step=global_step, decay_steps=10,
	end_learning_rate=0.011,  # 为了把线挪开一点分清,加了0.001
	power=1.0,
	cycle=False
)
learning_rate_2 = tf.train.polynomial_decay(  # 周期性衰减
	learning_rate=0.1, global_step=global_step, decay_steps=10,
	end_learning_rate=0.01,
	power=1.0,
	cycle=True
)
add1 = tf.assign_add(global_step, 1)

steps, lrs_1, lrs_2 = [], [], []
with tf.Session() as sess:
	sess.run(tf.global_variables_initializer())
	for _ in range(60):
		current_step, current_lr_1, current_lr_2, _ = sess.run([global_step, learning_rate_1, learning_rate_2, add1])
		steps.append(current_step)
		lrs_1.append(current_lr_1)
		lrs_2.append(current_lr_2)

plt.plot(steps, lrs_1, 'r-', linewidth=2)
plt.plot(steps, lrs_2, 'g-', linewidth=2)
plt.title('polynomial_decay')
plt.show()

polynomial_decay

polynomial_decay 学习率衰减
  • 红线表示 cycle=False,当迭代次数超过 decay_steps 后,保持 end_learning_rate 不再改变;绿线表示 cycle=True,当迭代次数超过 decay_steps 后,学习率从 end_learning_rate 上升到一个数值后,再次执行衰减。
  • 可以看到周期并没有变大。
  • 多项式衰减中设置学习率可以往复升降的目的是为了防止神经网络后期训练的学习率过小,导致网络参数陷入某个局部最优解出不来,设置学习率升高机制,有可能使网络跳出局部最优解[1]
  • 上升的值是逐渐变小的,因为随着 d e c a y _ s t e p s decay\_steps decay_steps 逐渐变大, g l o b a l _ s t e p d e c a y _ s t e p s \frac{global\_step}{decay\_steps} decay_stepsglobal_step 趋向于 1,最后可能几乎没有上升。像不像一山更比一山矮?刚开始跳得远,最后跳得近。

4. natural_exp_decay(自然指数衰减)

tf.train.natural_exp_decay(
    learning_rate,  # 初始学习率
    global_step,
    decay_steps,    # 衰减速度,指数部分,越大衰减越慢
    decay_rate,     # 衰减速度,与 decay_steps 相反
    staircase=False,
    name=None
)

learning_rate 为初始值,学习率随 global_step 的增长呈自然指数衰减,衰减速度由 decay_stepsdecay_rate(指数变化快慢)决定。公式:

c u r r e n t _ l r = l e a r n i n g _ r a t e ∗ e x p ( − d e c a y _ r a t e ∗ g l o b a l _ s t e p d e c a y _ s t e p s ) current\_lr = learning\_rate * exp(-decay\_rate * \frac{global\_step}{decay\_steps}) current_lr=learning_rateexp(decay_ratedecay_stepsglobal_step)

参数 staircaseexponential_decay(指数衰减) 中的一样。

使用示例:

import matplotlib.pyplot as plt
import tensorflow as tf

global_step = tf.Variable(0, name='global_step', trainable=False)
learning_rate_1 = tf.train.natural_exp_decay(  # 阶梯型衰减
	learning_rate=0.6, global_step=global_step, decay_steps=10,
	decay_rate=0.6,
	staircase=True
)
learning_rate_2 = tf.train.natural_exp_decay(  # 步步衰减
	learning_rate=0.6, global_step=global_step, decay_steps=10,
	decay_rate=0.6,
	staircase=False
)
add1 = tf.assign_add(global_step, 1)

steps, lrs_1, lrs_2 = [], [], []
with tf.Session() as sess:
	sess.run(tf.global_variables_initializer())
	for _ in range(60):
		current_step, current_lr_1, current_lr_2, _ = sess.run([global_step, learning_rate_1, learning_rate_2, add1])
		steps.append(current_step)
		lrs_1.append(current_lr_1)
		lrs_2.append(current_lr_2)

plt.plot(steps, lrs_1, 'r-', linewidth=2)
plt.plot(steps, lrs_2, 'g-', linewidth=2)
plt.title('natural_exp_decay')
plt.show()

/natural_exp_decay

natural_exp_decay 学习率衰减

本质上和 exponential_decay 是一样的。我们看公式:

e x p o n e n t i a l _ l r = l e a r n i n g _ r a t e ∗ p o w ( d e c a y _ r a t e , g l o b a l _ s t e p d e c a y _ s t e p s ) n a t u r a l _ e x p _ l r = l e a r n i n g _ r a t e ∗ e x p ( − d e c a y _ r a t e ∗ g l o b a l _ s t e p d e c a y _ s t e p s ) = l e a r n i n g _ r a t e ∗ p o w ( e − d e c a y _ r a t e , g l o b a l _ s t e p d e c a y _ s t e p s ) \begin{aligned} exponential\_lr &= learning\_rate * pow(decay\_rate, \frac{global\_step}{decay\_steps}) \\ natural\_exp\_lr &= learning\_rate * exp(-decay\_rate * \frac{global\_step}{decay\_steps}) \\ &= learning\_rate * pow(e^{-decay\_rate}, \frac{global\_step}{decay\_steps}) \\ \end{aligned} exponential_lrnatural_exp_lr=learning_ratepow(decay_rate,decay_stepsglobal_step)=learning_rateexp(decay_ratedecay_stepsglobal_step)=learning_ratepow(edecay_rate,decay_stepsglobal_step)

只要把 exponential_decay 中的 d e c a y _ r a t e decay\_rate decay_ratenatural_exp_decay 中的 e − d e c a y _ r a t e e^{-decay\_rate} edecay_rate 设置成一样,那么两者就完全一样。

5. inverse_time_decay(倒数衰减)

tf.train.inverse_time_decay(
    learning_rate,  # 初始学习率
    global_step,
    decay_steps,    # 衰减快慢,越大衰减越慢
    decay_rate,     # 衰减快慢,越小衰减越慢
    staircase=False,# 与指数衰减相同
    name=None
)

这跟指数衰减差不多,只不过把指数函数换成了倒数函数,可能下降得相对慢一点吧。公式:

c u r r e n t _ l r = l e a r n i n g _ r a t e / ( 1 + d e c a y _ r a t e ∗ g l o b a l _ s t e p d e c a y _ s t e p s ) current\_lr =learning\_rate / (1 + decay\_rate * \frac{global\_step}{decay\_steps}) current_lr=learning_rate/(1+decay_ratedecay_stepsglobal_step)

使用示例:

import matplotlib.pyplot as plt
import tensorflow as tf

global_step = tf.Variable(0, name='global_step', trainable=False)
learning_rate_1 = tf.train.inverse_time_decay(  # 阶梯型衰减
	learning_rate=0.1, global_step=global_step, decay_steps=10,
	decay_rate=0.2,
	staircase=True
)
learning_rate_2 = tf.train.inverse_time_decay(  # 步步衰减
	learning_rate=0.1, global_step=global_step, decay_steps=10,
	decay_rate=0.2,
	staircase=False
)
add1 = tf.assign_add(global_step, 1)

steps, lrs_1, lrs_2 = [], [], []
with tf.Session() as sess:
	sess.run(tf.global_variables_initializer())
	for _ in range(60):
		current_step, current_lr_1, current_lr_2, _ = sess.run([global_step, learning_rate_1, learning_rate_2, add1])
		steps.append(current_step)
		lrs_1.append(current_lr_1)
		lrs_2.append(current_lr_2)

plt.plot(steps, lrs_1, 'r-', linewidth=2)
plt.plot(steps, lrs_2, 'g-', linewidth=2)
plt.title('inverse_time_decay')
plt.show()

inverse_time_decay

inverse_time_decay 学习率衰减

6. 各种余弦衰减

6.1 cosine_decay(余弦衰减)
tf.train.cosine_decay(
    learning_rate,  # 初始学习率
    global_step,
    decay_steps,    # 衰减步数,之后不再衰减
    alpha=0.0,      # learning_rate ∗ alpha 为最低学习率
    name=None
)

学习率呈余弦式衰减,前期缓慢衰减,中期快速,后期又缓慢,decay_steps 步后,衰减到最低学习率 learning_rate ∗ alpha 并保持。公式:

g l o b a l _ s t e p = m i n ( g l o b a l _ s t e p , d e c a y _ s t e p s ) c o s i n e _ d e c a y = 0.5 ∗ ( 1 + c o s ( p i ∗ g l o b a l _ s t e p d e c a y _ s t e p s ) ) c u r r e n t _ l r = l e a r n i n g _ r a t e ∗ ( ( 1 − a l p h a ) ∗ c o s i n e _ d e c a y + a l p h a ) \begin{aligned} global\_step &= min(global\_step, decay\_steps) \\ cosine\_decay &= 0.5 * (1 + cos(pi * \frac{global\_step}{decay\_steps})) \\ current\_lr &= learning\_rate * ((1 - alpha) * cosine\_decay + alpha) \end{aligned} global_stepcosine_decaycurrent_lr=min(global_step,decay_steps)=0.5(1+cos(pidecay_stepsglobal_step))=learning_rate((1alpha)cosine_decay+alpha)

c o s i n e _ d e c a y cosine\_decay cosine_decay 表达式中, c o s cos cos 部分随着 g l o b a l _ s t e p global\_step global_step 增加从 c o s ( 0 ) = 1 cos(0)=1 cos(0)=1 逐渐降低到 c o s ( p i ) = − 1 cos(pi)=-1 cos(pi)=1 后保持不变,则 c o s i n e _ d e c a y cosine\_decay cosine_decay 从 1 沿余弦函数曲线下降到 0 后维持不变,最终 c u r r e n t _ l r = l e a r n i n g _ r a t e ∗ a l p h a current\_lr = learning\_rate * alpha current_lr=learning_ratealpha [1]

6.2 cosine_decay_restarts(重启式余弦衰减)
tf.train.cosine_decay_restarts(
    learning_rate,
	global_step,
	first_decay_steps,  # 第一个衰减期的衰减步数
	t_mul=2.0,          # 每次 restart,decay_steps 都会递归地乘以 t_mul
	m_mul=1.0,          # 每次 restart,learning_rate 都会递归地乘以 m_mul
	alpha=0.0,
	name=None
)

带重启的余弦式衰减,每个衰减期的过程都和 cosine_decay 一样。first_decay_steps 步后,衰减到最低学习率 learning_rate ∗ alpha,然后重启。新的衰减期中:learning_rate *= m_muldecay_steps *= t_mul。如此反复。

6.3 linear_cosine_decay(线性余弦衰减)

tf.train.linear_cosine_decay(
    learning_rate,
    global_step,
    computation.
    decay_steps,
    num_periods=0.5,  # 衰减期内余弦函数的周期数(这类似重启但更加灵活)
    alpha=0.0,
    beta=0.001,  # 最小学习率为 learning_rate * beta
    name=None
)

同时进行线性衰减和余弦衰减的双重衰减,体现在两者相乘。公式:

g l o b a l _ s t e p = m i n ( g l o b a l _ s t e p , d e c a y _ s t e p s ) l i n e a r _ d e c a y = d e c a y _ s t e p s − g l o b a l _ s t e p d e c a y _ s t e p s = 1 − g l o b a l _ s t e p d e c a y _ s t e p s c o s i n e _ d e c a y = 0.5 ∗ ( 1 + c o s ( p i ∗ 2 ∗ n u m _ p e r i o d s ∗ g l o b a l _ s t e p d e c a y _ s t e p s ) ) c u r r e n t _ l r = l e a r n i n g _ r a t e ∗ ( ( a l p h a + l i n e a r _ d e c a y ) ∗ c o s i n e _ d e c a y + b e t a ) = l e a r n i n g _ r a t e ∗ ( ( 1 + a l p h a − g l o b a l _ s t e p d e c a y _ s t e p s ) ∗ c o s i n e _ d e c a y + b e t a ) \begin{aligned} global\_step &= min(global\_step, decay\_steps) \\ linear\_decay &= \frac{decay\_steps - global\_step}{decay\_steps} = 1 - \frac{global\_step}{decay\_steps} \\ cosine\_decay &= 0.5 * (1 + cos(pi * 2 * num\_periods * \frac{global\_step}{decay\_steps})) \\ current\_lr &= learning\_rate * ((alpha + linear\_decay) * cosine\_decay + beta) \\ &= learning\_rate * ((1 + alpha - \frac{global\_step}{decay\_steps}) * cosine\_decay + beta) \end{aligned} global_steplinear_decaycosine_decaycurrent_lr=min(global_step,decay_steps)=decay_stepsdecay_stepsglobal_step=1decay_stepsglobal_step=0.5(1+cos(pi2num_periodsdecay_stepsglobal_step))=learning_rate((alpha+linear_decay)cosine_decay+beta)=learning_rate((1+alphadecay_stepsglobal_step)cosine_decay+beta)

相比 cosine_decay 增加了两个特性:

(1)与线性衰减相乘的效果为:后期相对前期衰减更快(线性衰减的叠加);
(2)num_periods 可以灵活设置衰减期内余弦函数的周期数,默认是半个周期(余弦值从 1 到 0),若设置为默认值,则和 cosine_decay 相同。

6.4 noisy_linear_cosine_decay(噪声线性余弦衰减)
tf.train.noisy_linear_cosine_decay(
    learning_rate,
    global_step,
    decay_steps,
    initial_variance=1.0,  # initial variance for the noise. 
    variance_decay=0.55,   # decay for the noise's variance. See computation above.
    num_periods=0.5,       # Number of periods in the cosine part of the decay. 
    alpha=0.0,
    beta=0.001,
    name=None
)

相比 linear_cosine_decay,在线性部分加入了高斯扰动,具体有什么用咱也不清楚。 d e c a y e d decayed decayed 变为:

d e c a y e d = ( a l p h a + l i n e a r _ d e c a y + e p s _ t ) ∗ c o s i n e _ d e c a y + b e t a decayed = (alpha + linear\_decay + eps\_t) * cosine\_decay + beta decayed=(alpha+linear_decay+eps_t)cosine_decay+beta

线性部分多了个 e p s _ t eps\_t eps_t,由 initial_variancevariance_decay 决定(暂不研究)。

6.5 对以上四种余弦衰减策略,画在同一张图中:
import matplotlib.pyplot as plt
import tensorflow as tf

global_step = tf.Variable(0, name='global_step', trainable=False)
learning_rate_1 = tf.train.cosine_decay(
	learning_rate=0.3, global_step=global_step, decay_steps=50,
	alpha=0.01
)
learning_rate_2 = tf.train.cosine_decay_restarts(
	learning_rate=0.3, global_step=global_step, first_decay_steps=10,
	t_mul=1.5,
	m_mul=0.8,
	alpha=0.011
)
learning_rate_3 = tf.train.linear_cosine_decay(
	learning_rate=0.3, global_step=global_step, decay_steps=50,
	num_periods=3.0,
	alpha=0.0,
	beta=0.2
)
learning_rate_4 = tf.train.noisy_linear_cosine_decay(
	learning_rate=0.1, global_step=global_step, decay_steps=50,
	initial_variance=0.01,
	variance_decay=0.1,
	num_periods=0.2,
	alpha=0.5,
	beta=0.2
)

add1 = tf.assign_add(global_step, 1)

steps, lrs_1, lrs_2, lrs_3, lrs_4 = [], [], [], [], []
with tf.Session() as sess:
	sess.run(tf.global_variables_initializer())
	for _ in range(60):
		current_step, current_lr_1, current_lr_2, current_lr_3, current_lr_4, _ = sess.run(
			[global_step, learning_rate_1, learning_rate_2, learning_rate_3, learning_rate_4, add1]
		)
		steps.append(current_step)
		lrs_1.append(current_lr_1)
		lrs_2.append(current_lr_2)
		lrs_3.append(current_lr_3)
		lrs_4.append(current_lr_4)

plt.plot(steps, lrs_1, 'r-', linewidth=2)
plt.plot(steps, lrs_2, 'g-', linewidth=2)
plt.plot(steps, lrs_3, 'b-', linewidth=2)
plt.plot(steps, lrs_4, 'y-', linewidth=2)
plt.title('cosine_decay')
plt.show()

cosine_decay

inverse_time_decay 学习率衰减

红色为标准余弦衰减(cosine_decay);绿色为重启式余弦衰减(cosine_decay_restarts);蓝色为线性余弦衰减(linear_cosine_decay);黄色为噪声线性余弦衰减(noisy_linear_cosine_decay);

看起来 linear_cosine_decaycosine_decay_restarts 更加丝滑。


References

[1] 深度学习中常用的学习率衰减策略及tensorflow实现

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 学习率衰减是指在训练神经网络时,随着训练的进行,逐渐降低学习率的过程。这样做的目的是为了让模型在训练初期快速收敛,而在训练后期避免过拟合。在TensorFlow 2.0,可以通过使用tf.keras.optimizers的learning_rate_scheduler来实现学习率衰减。常见的学习率衰减方法有Step Decay、Exponential Decay、Cosine Decay等。 ### 回答2: 学习率衰减是指在训练神经网络时,随着训练的进行,逐渐减小学习率的过程。在本文,我们将介绍TensorFlow 2.0学习率衰减的方法和实现。 TensorFlow 2.0学习率衰减有三种实现方式:时间衰减、余弦退火和指数衰减。其,指数衰减是最常用的方法,因为它非常简单且易于调整,同时也有良好的效果。 指数衰减通过指数函数逐渐减小学习率,可以实现快速收敛和防止过拟合。具体实现方式为: ```python initial_learning_rate = 0.1 # 初始化学习率 decay_steps = 10000 # 衰减步数 decay_rate = 0.96 # 衰减率 step = tf.Variable(0, trainable=False) # 定义指数衰减函数 learning_rate = tf.compat.v1.train.exponential_decay(initial_learning_rate, step, decay_steps, decay_rate, staircase=True) # 定义优化器 optimizer = tf.keras.optimizers.SGD(learning_rate) ``` 在上述代码,我们首先定义了初始学习率衰减步数和衰减率,然后通过指数衰减函数逐步减小学习率。最后,我们使用SGD优化器来训练模型。 除了指数衰减TensorFlow 2.0还支持余弦退火和时间衰减。其,余弦退火在训练初期较快地减小学习率,在接近最优解时较慢地减小学习率,从而有效地避免了局部最优解;时间衰减则类似于指数衰减,只是减小学习率的速度不同。 总之,在训练神经网络时使用学习率衰减可以加速收敛、防止过拟合和提高模型的泛化能力。TensorFlow 2.0提供了三种学习率衰减的实现方式,其指数衰减是最常用的方法,也是最简单易用的方法。 ### 回答3: 学习率衰减是一种优化算法,它可以帮助更好地训练深度神经网络,并且可以提高模型的准确性和泛化能力。Tensorflow2.0提供了许多学习率衰减函数,可以在训练模型时轻松地应用它们。 学习率衰减可以理解为一种策略,它会随着训练的进行,逐渐减小模型参数的更新量。这是因为在初始训练阶段,学习率越大,模型参数更新越大,但随着训练的进行,参数更新越来越小,这样会使模型达到一个比较稳定的状态。如果学习率不改变,则可能会导致模型过拟合,并且训练时间可能会更长。 Tensorflow2.0提供了三种不同的学习率衰减方式:指数衰减、多项式衰减和余弦衰减。其指数衰减方式是最常用的方法,它会通过一个指数函数来不断减小学习率,每次减小的程度也可以进行设置。多项式衰减方式会通过一个多项式函数来不断减小学习率,而余弦衰减则会根据余弦函数不断减小学习率学习率衰减不仅可以提高模型的准确性和泛化能力,还可以在遇到局部极小值时,帮助模型跳出局部极小值,更快地找到全局最优解。在使用学习率衰减时,需要注意一些常见的问题,例如衰减率、衰减周期、起始学习率等等。这些参数需要根据具体情况进行设置,以获得更好的训练效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值