机器学习笔记之贝叶斯分类

设每个数据样本用一个n维特征向量来描述n个属性的值,即:X={x1,x2,…,xn},假定有m个类,分别用C1, C2,…,Cm表示。给定一个未知的数据样本X(即没有类标号)
根据贝叶斯定理:最大化后验概率P(Ci|X)可转化为最大化先验概率P(X|Ci)P(Ci),先验概率P(x1|Ci),P(x2|Ci),…,P(xn|Ci)可以从训练数据集求得。根据此方法,对一个未知类别的样本X,可以先分别计算出X属于每一个类别Ci的概率P(X|Ci)P(Ci),然后选择其中概率最大的类别作为其类别。朴素贝叶斯算法成立的前提是各属性之间互相独立。当数据集满足这种独立性假设时,分类的准确度较高,否则可能较低。

  1. 估计类条件概率P(x|C):
    极大似然估计:先假定它具有某种概率分布形式,在分析训练样本估计一下这种分布形式的参数。所以概率模型的训练过程无非就是参数估计的过程。
    我们的目的找到参数向量θc能唯一确定P(x|C)。 Dc表示训练集D中c类样本的集合,假设他们独立同分布(相互独立且服从同一分布),则参数θc对于对于Dc的似然是
    图片
  2. 难以从有限样本中获得P(x|C):
    朴素贝叶斯分类器引入“属性条件独立性假设”,对已知类别假设所有属性相互独立。
    在这里插入图片描述
    朴素贝叶斯表达式,其基于训练集D来估计Pc,并且为每个属性估计条件概率P(x|C)。Pc是它属于某一类的概率,后面的式子是在它属性c类情况下所有x属性概率的乘积。
  3. 朴素贝叶斯分类器的优缺点
    优点:开销小,算法简单易于实现。
    缺点:在属性个数比较多或者属性之间相关性较大时,分类效果不好。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值