目标匹配
简要梳理一下目标匹配
匹配主要用来拼接、变化检测、双目深度计算等,根据匹配的方法分为稀疏匹配(sparse)和稠密匹配(dense)。稀疏匹配主要是特征点+距离测度(衡量两个向量的相似度),稠密匹配为块匹配。
稀疏匹配
稀疏匹配,找到能够代表图像信息的关键点(如角点),计算最相似的对应匹配点。
常用的特征有sift,surf,harris等,一般选用欧氏距离、互相关等。若目的是稠密匹配,可先进行目标分割,利用分割结果refine之前的匹配结果。
特征点匹配,会涉及到outlier剔除。一般采用随机采样一致性(RANSAC),这个方法用处很大,在很多拟合的问题中都会涉及。该方法认为数据中有一些离群点是需要被剔除的,适当割舍一些数据达到更好的效果。
RANSAC的效果和三个参数有关系,初始样本点、最大抽样迭代次数和容差sigma。
目前做过的稀疏匹配,首先提取特征点,然后计算3*3变换矩阵,如果只涉及到旋转和平移的刚性变换,就是2*2矩阵。
块匹配
推荐 https://blog.csdn.net/hujingshuang/article/details/47759579
写的非常详细,给出了各个相似度的计算公式
块匹配,简单来说,对于每一个像素点(x,y)加入其上下文信息,