视觉SLAM笔记(55) 位姿图

位姿图(Pose Graph)是SLAM中的一种优化策略,它仅关注轨迹优化,忽略特征点的优化。文章阐述了位姿图的意义,指出在大规模定位与建图问题中,BA方法的效率会下降,而位姿图通过只优化相机位姿间的联系,减少计算量。接着详细介绍了位姿图优化过程中的节点和边,包括相机位姿的表示、相对运动估计和误差最小化的雅可比矩阵计算。最后提到,位姿图优化问题可以使用Ceres或g2o等工具求解。
摘要由CSDN通过智能技术生成

视觉SLAM笔记(55) 位姿图


1. Pose Graph 的意义

带有相机位姿和空间点的图优化称为 BA,能够有效地求解大规模的定位与建图问题
但是,随着时间的流逝,机器人的运动轨迹将越来越长,地图规模也将不断增长
像 BA 这样的方法,计算效率就会(令人担忧地)不断下降

根据前面的讨论,发现特征点在优化问题中占据了绝大多数部分
而实际上,经过若干次观测之后,那些收敛的特征点,空间位置估计就会收敛至一个值保持不动
而发散的外点则通常看不到了
对收敛点再进行优化,似乎是有些费力不讨好的

因此,更倾向于在优化几次之后就把特征点固定住,只把它们看作位姿估计的约束
而不再实际地优化它们的位置估计

沿着这个思路往下走,会发现:是否能够完全不管路标,而只管轨迹呢?
完全可以构建一个只有轨迹的图优化
而位姿节点之间的边,可以由两个关键帧之间通过特征匹配之后得到的运动估计来给定初始值
不同的是,一旦初始估计完成,就不再优化那些路标点的位置,而只关心所有的相机位姿之间的联系了
通过这种方式,省去了大量的特征点优化的计算,只保留了关键帧的轨迹
从而

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

氢键H-H

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值