总结Fmask算法的学习资料。
1.经典论文:
(1) Object-based cloud and cloud shadow detection in Landsat imagery.
(2) Improved cloud and cloud shadow detection in Landsats 4-8 and Sentinel-2 imagery.
(3) Improvement of the Fmask algorithm for Sentinel-2 images: Separating clouds from bright surfaces based on parallax effects.
2.Fmask算法介绍
Fmask算法最初是为LandSat卫星4-7的云、云影和雪而开发的。通过使用基于对象的云和云阴影匹配算法,它能够为每个单独的图像提供云、云阴影和雪遮罩。
具体原理:输入数据是波段1、2、3、4、5、7和波段6亮度温度(BT)的大气顶部(TOA)反射率。对于陆地卫星L1T图像,使用LEDAPS大气校正工具将数字(DN)值转换为TOA反射率和BT(摄氏度)。然后,使用基于云和云阴影物理属性的规则提取潜在云层和潜在云阴影层。最后,利用分割出的潜在云层和几何关系匹配潜在云阴影层,生成最终云和云阴影遮罩。如果陆地卫星场景有雪,Fmask也将生成一个雪遮罩。(https://blog.csdn.net/ssshyeong/article/details/120605111)
3.实现方法
(1)Python实现方法:https://www.pythonfmask.org/en/latest/
(2)Github资源:https://github.com/gersl/fmask
(3)sentinel2 cloud mask with fmask:https://forum.step.esa.int/t/sentinel-2-cloud-mask-with-fmask/4152
(4)FMask processor:https://github.com/GERSL/Fmask