Object-based cloud and cloud shadow detection in Landsat imagery
Fmask首先使用基于云物理属性的规则来分离潜在云像素(PCP)和清晰天空像素。接下来,将归一化温度概率、光谱可变性概率和亮度概率结合起来,分别为陆地和水域上的云生成概率遮罩。然后,将PCP和云概率掩模一起用于推导潜在云层。
1.概述
问题:
- 大多数传感器都是为中等空间分辨率传感器设计的,如先进的甚高分辨率辐射计(AVHRR)和中等分辨率成像光谱辐射计(MODIS)。
- 对于像陆地卫星这样的高空间分辨率传感器,只有一个热波段和6个光学波段位于大气窗口中,准确的云识别是困难的。
- 当云为半透明时,云阴影的变暗效果可能很微妙,使云阴影难以检测。
2.背景
- Landsat卫星数据中的云筛选是由自动云量评估(ACCA)系统进行的,ACCA通过应用大量光谱过滤器,并在很大程度上依赖于热红外波段,通常可以很好地估计每个陆地卫星场景中云的总体百分比。然而,它没有提供足够精确的云及其阴影的位置和边界,无法用于陆地卫星图像时间序列的自动分析。此外,ACCA未能识别暖卷云,并错误地将高纬度地区的雪/冰识别为云
参考: - Wang等人(1999年)提出使用两幅多时相陆地卫星TM图像通过图像差分查找云及其阴影。该方法可以成功地提供精确的云和云阴影遮罩,但它高度依赖于输入图像,需要一定的时间分辨率
参考: - Choi和Bindschadler(2004)提出了一种通过阴影匹配技术和自动归一化差异雪指数(NDSI)阈值检测冰盖上云的方法。该方法迭代匹配可能的云和云阴影边缘,以找到用于云检测的最佳NDSI阈值。它在冰原上运行良好,但耗时且仅对冰原表面有效。陆地卫星生态系统扰动自适应处理系统(LEDAPS)大气校正工具还生成一个内部云遮罩(Vermote& Saleous,2007)。
参考:
3.FMask算法
输入数据是波段1、2、3、4、5、7和波段6亮度温度(BT)的大气顶部(TOA)反射率。对于陆地卫星L1T图像,使用LEDAPS大气校正工具将数字(DN)值转换为TOA反射率和BT(摄氏度)。然后,使用基于云和云阴影物理属性的规则提取潜在云层和潜在云阴影层。最后,利用分割出的潜在云层和几何关系匹配潜在云阴影层,生成最终云和云阴影遮罩。如果陆地卫星场景有雪,Fmask也将生成一个雪遮罩。
3.1.潜在云、云影和雪层
3.1.1.潜在云层PCP识别一(Potential cloud layer—pass one)
首先结合几个光谱测试来识别潜在的云像素(PCP)——可能是多云的像素,有时可能是清晰的像素:
由于云的明亮和寒冷的性质,所有类型的云都应该具有大于0.03(LEDAPS内部云掩蔽算法的传统)和低于27°C的BT(ACCA的传统)。云的NDSI和NDVI值通常在零左右,因为它们在光谱带中具有“白色”特征。对于某些云类型,例如植被覆盖率高的区域上的极薄云或冰云,NDVI和NDSI值可能较大,但两者都不能大于0.8,ACCA还使用NDSI阈值0.8以在第一个过程中将云与雪像素分离。
whiteness指数最初由Gomez Chova等人(2007)提出,使用可见光带之间的绝对差值和总体亮度之和来捕获此云属性。通过将差值除以可见波段的平均值,新的whiteness指数适用于LandSat卫星图像&#