从优化角度看L1正则化的稀疏性

背景大数据背景的几个特点:量大large scale,实时性动态产生数据,结构化/半结构化数据,可信赖程度低(Noise,考虑模型如何更robust),高维度且稀疏的数据集。这里主要说高维稀疏数据带来的一些问题:x=(x1,x2,⋯ ,xp)x=\left(x_{1}, x_{2}, \cdots, x_{p}\right)x=(x1​,x2​,⋯,xp​), 特征是p维,数据样例有n个,...
摘要由CSDN通过智能技术生成

背景

大数据背景的几个特点:量大large scale,实时性动态产生数据,结构化/半结构化数据,可信赖程度低(Noise,考虑模型如何更robust),高维度且稀疏的数据集。

这里主要说高维稀疏数据带来的一些问题:

x = ( x 1 , x 2 , ⋯   , x p ) x=\left(x_{1}, x_{2}, \cdots, x_{p}\right) x=(x1,x2,,xp), 特征是p维,数据样例有n个,即整个dataset是 n × p ,传统的统计方法适用于一些 n > p 的情况,但是当 n << p的时候,数据量小,但想要求的参数又很多的时候就有困难了。

Linear Regression

从最基本的模型开始来看如何解决这个问题。

X 代表输入,Y代表输出, ε \varepsilon ε 是误差项。

Y = f ( X ) + ε Y=f(X)+\varepsilon Y=f(X)+ε

监督学习,给出数据集 ( X 1 , Y 1 ) , ( X 2 , Y 2 ) , … , ( X n , Y n ) \left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right) (X1,Y1),(X2,Y2

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值