极大似然估计与贝叶斯估计

极大似然估计

核心思想

已知某个随机变量的样本集合X符合某种概率分布,但是这个分布的超参数 θ \theta θ还未知。此时即可通过极大似然估计得到 θ ^ \hat \theta θ^,令估计得到的 θ ^ \hat \theta θ^使得这个样本集合出现的概率最大。即
θ ^ = arg ⁡ max ⁡ θ P ( D ∣ θ ) \hat{\boldsymbol{\theta}}=\arg \max _{\boldsymbol{\theta}} P(D | \boldsymbol{\theta}) θ^=argθmaxP(Dθ)
也就是说参数是自变量,集合出现的概率是应变量。

一般步骤

写出似然函数
L ( θ i ) = ∏ i = 1 N f ( x i , θ 1 , θ 2 … θ n ) L\left(\theta_{i}\right)=\prod_{i=1}^{N} f\left(x_{i}, \theta_{1}, \theta_{2} \dots \theta_{n}\right) L(θi)=i=1Nf(xi,θ1,θ2θn)
对似然函数取对数
ln ⁡ L ( θ i ) \ln L\left(\theta_{i}\right) lnL(θi)
θ i \theta_i θi求偏导数
∂ ∂ θ t ln ⁡ L ( θ ) \frac{\partial}{\partial \theta_{t}} \ln L(\theta) θtlnL(θ)
解似然方程组
∂ ∂ θ t ln ⁡ L ( θ ) = 0 \frac{\partial}{\partial \theta_{t}} \ln L(\theta)=0 θtlnL(θ)=0

具体实例

来推导下面正态分布中,概率密度函数的参数 μ \mu μ的极大似然估计。概率密度函数如下
f ( x ) = 1 2 π σ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) f(x)=2π σ1exp(2σ2(xμ)2)
按照上面所给的一般步骤,第一步求各个样本 x i x_i xi出现的概率之积,也就是似然函数:
L ( μ ) = ∏ i = 1 n f ( x i , μ ) = ∏ i = 1 n 1 2 π σ exp ⁡ ( − ( x i − μ ) 2 2 σ 2 ) \mathrm{L}(\mu)=\prod_{i=1}^{n} f\left(x_{i}, \mu\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right) L(μ)=i

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值