Data Augmentation的几种常用方法总结:
Color Jittering:对颜色的数据增强:图像亮度、饱和度、对比度变化
PCA Jittering:首先按照RGB三个颜色通道计算均值和标准差,再在整个训练集上计算协方差矩阵,进行特征分解,得到特征向量和特征值,用来做PCA Jittering;
Random Scale:尺度变换;
Random Crop:采用随机图像差值方式,对图像进行裁剪、缩放;包括Scale Jittering方法(VGG及ResNet模型使用)或者尺度和长宽比增强变换;
Horizontal/Vertical Flip:水平/垂直翻转;
Shift:平移变换;
Rotation/Reflection:旋转/仿射变换;
Noise:高斯噪声、模糊处理;
Label shuffle:类别不平衡数据的增广,参见海康威视ILSVRC2016的report;
Scale jittering(简单来说,就是crop size是固定的,而image size是随机可变的。举例来说,比如把crop size固定在224×224,而image的短边可以按比例缩放到[256, 480]区间的某个随机数值,然后随机偏移裁剪个224×224的图像区域。)
大部分参考这篇文章链接:https://www.cnblogs.com/zhonghuasong/p/7256498.html
Data Augmentation的几种常用方法总结
最新推荐文章于 2025-09-19 21:11:56 发布
本文总结了多种常用的数据增强方法,包括颜色抖动(ColorJittering)、PCA抖动(PCAJittering)、随机缩放(RandomScale)、随机裁剪(RandomCrop)、水平/垂直翻转(Horizontal/VerticalFlip)等,旨在提升图像数据集的多样性和模型泛化能力。
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
Python3.10
Conda
Python
Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本
627

被折叠的 条评论
为什么被折叠?



