CNN中卷积核数和输出通道数的关系

卷积神经网络cnn中,卷积核大小一般取1、3、5…,其通道数是与输入通道数相等的,卷积核大小加上通道数成为一个卷积核 C i n ∗ s i z e ∗ s i z e C_{in}*size*size Cinsizesize。卷积核数与输出通道数是相等的,且可以自定义,取决于自己的实验设置。
如果一个卷积核会有三个通道,每个卷积核对三个通道的图片卷积然后相加得到一个feature map(此时为一个二维矩阵)。

有一个动态图展示了其中的运算过程。注意:动态图中的卷积步长stride为2。原图出处

图中卷积核Fileter的个数与输出通道数Outout是对应的,每一个输出由多通道卷积累加并加上偏执Bias得到,一个卷积核只有一个偏执值。PyTorch框架对卷积运算Conv2d的描述亦是如此。
卷积运算
特地以PyTorch代码验证一下动图中的运算。关键函数conv2d()参见官方文档

import torch
import torch.nn.functional as F
import numpy

input = torch.FloatTensor([ [[[0, 1, 1, 2, 2], [0, 1, 1, 
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值