置信区间

1.点估计与区间估计

首先我们看看点估计的含义:
是用样本统计量来估计总体参数,因为样本统计量为数轴上某一点值,估计的结果也以一个点的数值表示,所以称为点估计。点估计虽然给出了未知参数的估计值,但是未给出估计值的可靠程度,即估计值偏离未知参数真实值的程度。
接下来看下区间估计:
给定置信水平,根据估计值确定真实值可能出现的区间范围,该区间通常以估计值为中心,该区间则为置信区间。

2.中心极限定理与大数定理

中心极限定理:
在适当的条件下,大量相互独立随机变量的均值经适当标准化后依分布收敛于正态分布。例如我们要计算全中国人的平均身高。如果每次取10000个身高作为样本,对应有一个样本均值。如果再从总体中重复抽取n多次10000个样本,就对应有n个样本均值。随着n增大,把所有样本均值画出来,得到的就是一个接近正太分布的曲线。
大数定理:
取样数趋近无穷时,样品平均值按概率收敛于期望值。抛硬币的次数越多,越接近正反各一半。

3.置信区间与置信水平

一般我们用中括号[a,b]表示样本估计总体平均值误差范围的区间。a、b的具体数值取决于你对于”该区间包含总体均值”这一结果的可信程度,因此[a,b]被称为置信区间。
一般来说,选定某一个置信区间,我们的目的是为了让”ab之间包含总体平均值”的结果有一特定的概率,这个概率就是所谓的置信水平。
例如我们最常用的95%置信水平,就是说做100次抽样,有95次的置信区间包含了总体均值。

4.标准差(standard deviation)与标准误差(standard error)

标准差是描述观察值(个体值)之间的变异程度(例如一个人打十次靶子的成绩,这时有一个平均数8,有一个反映他成绩稳定与否的标准差);
标准误是描述样本均数的抽样误差(例如十次抽样,每次他成绩平均数(7,8,6,9,5,6,7,7,8,9)的标准差,也就是抽样分布的标准差);
样本的标准误差为:

SE=s()n−−√SE=s(样本标准差)n

5.如何理解95%的置信区间

以上面的统计身高为例,假设全国人民的身高服从正态分布:

XN(μ,σ2)X∼N(μ,σ2)

不断进行采样,假设样本的大小为n,则样本的均值为:

M=X1+X2++XnnM=X1+X2+⋯+Xnn

由大数定理与中心极限定理:

MN(μ,σ21)M∼N(μ,σ12)
的计算方法为第4部分提到的标准误差!

为什么常用95%的置信水平:

这里写图片描述

对照上图,用一句简单的话概括就是:
有95%的样本均值会落在2个(比较精确的值是1.96)标准误差范围内。

用数学公式描述就是:

P(μ1.96σn−−√<M<μ+1.96σn−−√)=0.95P(μ−1.96σn<M<μ+1.96σn)=0.95

6.计算置信区间的套路

从上面的例子来看,计算置信区间的套路如下:
1.首先明确要求解的问题。比如我们的例子,就是想通过样本来估计全国人民身高的平均值。
2.求抽样样本的平均值与标准误差(standard error)。注意标准误差与标准差(standard deviation)不一样。
3.确定需要的置信水平。比如常用的95%的置信水平,这样可以保证样本的均值会落在总体平均值2个标准差得范围内。
4.查z表,求z值。
5.计算置信区间
a = 样本均值 - z*标准误差
b = 样本均值 + z*标准误差

用公式表示置信区间:

x¯¯¯±zsn−−√x¯±zsn
为样本的方差。

                                        <div class="article-copyright">
            <span class="creativecommons">
                <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">
                </a>
                <span>
                    版权声明:本文为博主原创文章,遵循<a href="http://creativecommons.org/licenses/by-sa/4.0/" target="_blank" rel="noopener"> CC 4.0 BY-SA </a>版权协议,转载请附上原文出处链接和本声明。                    </span>
                <div class="article-source-link2222">
                    本文链接:<a href="https://blog.csdn.net/yimingsilence/article/details/78084810">https://blog.csdn.net/yimingsilence/article/details/78084810</a>
                </div>
            </span>
                
            </div>
                                                <!--一个博主专栏付费入口-->
                      <!--一个博主专栏付费入口结束-->
        <link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-4a3473df85.css">
                                    <link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-4a3473df85.css">
            <div class="htmledit_views" id="content_views">
关于置信区间和置信度的理解,在网上找了两个相关的观点感觉讲的很好,恍然大悟。
简单概括。
参数只有一个是固定的不会变。我们用局部估计整体。
参数95%的置信度在区间A的意思是:
正确:采样100次计算95%置信度的置信区间,有95次计算所得的区间包含真实值。
错误:采样100次,有95次真实值落在置信区间。
真实值不会变,变得是置信区间。

下面是两个引用:
http://bbs.pinggu.org/thread-3037010-1-1.html
https://www.zhihu.com/question/2018 

要说置信度,首先老师肯定会在此前已经介绍过了点估计了,那么引入这个概念的目的自然是为了配合一个叫做区间估计,估算置信区间。通常都是用点估计(点估计一般就是用概率论导出的一个估计值)算出来的数据加上一个变动幅度形成一个区间。在这个变动幅度里,涉及到一个参数就是置信度。

  • 首先我们要问为什么要用区间估计?

咱来看个例子:你打枪打10次,你可以得到一个平均值,比如是8.那么我问你,总体的期望是不是就是8呢?你要说是,那就太草率了吧,因为你再打10次可能就是7了,那么总体的期望就变成7了嘛?当然不是,总体的期望是客观存在不会变的。实际上均值等于期望的概率是0啊,所以说,以点估点是不准确的。但是既然样本是从总体中抽出来的,那么样本的均值和总体的期望应该差的不远吧?你射击的均值是8,总体的期望总不能是1吧?所以,你若换句话说打枪的平均环数是[6,8],那么相信的人就会很多了。可见,虽然扩大了总体均值的取值范围,但是可信度明显高了。

当然你不能简单无限度扩大区间范围,毕竟统计也要讲究一定的精度。所以咱就有了置信度,也就是说,你测得的均值,和总体真实情况的差距小于这个给定的值的概率,说你测得的均值就是总体期望是很草率的,但是说,我有95%的把握认为我测得的均值,非常接近总体的期望了,听起来就靠谱的多。

  • 平时我们常说的95%置信度到底是什么意思呢?

要理解置信度,就要理解好置信区间。要理解置信区间,就要从统计学最基本最核心的思想去思考,那就是用样本估计总体。在统计学中,非常容易把概念模糊化,很容易把95%置信区间理解成为在这个区间内有95%的概率包含真值。
但是这里有两个容易混淆的地方
1.真值指得是样本参数还是总体参数?这个问题的答案是总体参数,我们取的数据是样本数据,点估计是样本参数的真实值,我们要估计总体参数。
2.95%的概率,变动的是谁?这里95%的概率,变动的是置信区间。


错误理解:假如有100个考生,100个学生中有95个考分落在(70,80)这个区间内。这就是95%置信度。
这是非常错误的理解,样本与总体的关系没有思考清楚。置信区间是估测总体参数的真值,这个值只有一个,且不会变动。
那正确的应该怎么理解呢?
样本数目不变的情况下,做一百次试验,有95个置信区间包含了总体真值。置信度为95%。换言之,若扩大样本容量,考100次试,这100名学生的成绩组成改的区间有95次包含了总体真正的均值,那这才是95%置信度。说白了,我们有95%的把握说总体的真值在这个区间内。

  • 那么还有一个问题,是不是置信度越高越好?

这个问题就要看你需要统计的是什么?经济效益是什么?通常情况下,95%被作为常用的置信度,原理就在于3西格玛控制(在一些严格的领域甚至会用到6西格玛),此时已经有很高的置信度了,那在往上去,随着置信度的上升,置信区间的跨度也就越大,对参数估计的精度必定降低。点估计就一个值,精度高,但置信度则低,精度与置信度相互的取舍则要全由分析者自行选择了。

楼主tips:置信度这个问题,其实核心问题就是要理解我们的核心思想是用样本估计总体,保证的是总体参数的精确度,这个区间是为总体设计的即可。

--------------------------------------------============================================================================================
====================================================================================================================

要理解置信度,就要理解好置信区间。
要理解置信区间,就要从统计学最基本最核心的思想去思考,那就是
用样本估计总体。
在统计学中,非常容易把概念模糊化,很容易把95%置信区间理解成为在这个区间内有95%的概率包含真值。
但是这里有两个容易混淆的地方
1.真值只得是样本参数还是总体参数?
这个问题的答案是总体参数,我们取的数据是样本数据,点估计是样本参数的真实值,我们要估计总体参数。
2.95%的概率,变动的是谁?
在以后不常温习的情况下,这个问题容易造成困扰。这里95%的概率,变动的是置信区间。非常难以理解,用图来阐述一下:
&amp;amp;lt;img data-rawheight=&quot;3508&quot; data-rawwidth=&quot;2480&quot; src=&quot;https://i-blog.csdnimg.cn/blog_migrate/5837f54f03a03d6d57d8d8b3657bf7ea.jpeg&quot; class=&quot;origin_image zh-lightbox-thumb&quot; width=&quot;2480&quot; data-original=&quot;https://pic3.zhimg.com/ad6b8118232d8e702c28ed52b68f0776_r.jpg&quot;&amp;amp;gt;

错误理解:上图浅色的虚的竖直线代表样本参数真值,横的两端有端点的代表95%置信度的置信区间,100条竖直线里有95条左右落入这个区间内。
这是非常错误的理解,样本与总体的关系没有思考清楚。置信区间是估测总体参数的真值,这个值只有一个,且不会变动。

下图为正确理解:
&amp;amp;lt;img data-rawheight=&quot;3508&quot; data-rawwidth=&quot;2480&quot; src=&quot;https://i-blog.csdnimg.cn/blog_migrate/dff627a56baf1196f476d1fb6aed2cf7.jpeg&quot; class=&quot;origin_image zh-lightbox-thumb&quot; width=&quot;2480&quot; data-original=&quot;https://pic1.zhimg.com/eab7e81a9a00080c6658d0ff2ac2e7ac_r.jpg&quot;&amp;amp;gt;

样本数目不变的情况下,做一百次试验,有95个置信区间包含了总体真值。置信度为95%
其中大虚线表示总体参数真值,是我们所不知道的想要估计的值。正因为在100个置信区间里有95个置信区间包括了真实值,所以当我们只做了一次置信区间时,我们也认为这个区间是可信的,是包含了总体参数真实值的。

这样应该就能很好地理解了,遇到统计上的困惑时,多思考 用样本估计总体这个核心思想,很多就能迎刃而解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值