Keras复杂网络的搭建

本文介绍了如何使用Keras的函数式API构建复杂的深度学习模型,包括多输入、多输出网络、Inception模块、残差连接,并展示了如何将层作为独立模型。对于多输入模型,例如问答系统,模型接受问题和文本片段作为输入。而在多输出模型中,如预测用户属性,可以针对不同预测目标使用不同损失函数。同时,文中探讨了Inception结构和残差网络的设计,以及如何构建共享层的双摄像头视觉模型。
摘要由CSDN通过智能技术生成

概述

在我们刚接触keras时候用的都是用的Sequential模型实现的,但是这种网络只能有一个输入和一个输出,如果我们要搭建多模态的网络(多输入多输出,层与层之间的跨越连接等)就要用keras函数式API了。

Sequential To 函数API

函数式API就是建立一个层,接受张量并返回张量。我们俩看看Sequential模型以及对应的函数式API实现

from keras.models import Sequential, Model
from keras import layers
from keras import Input
seq_model = Sequential()
seq_model.add(layers.Dense(32, activation='relu', input_shape=(64,)))
seq_model.add(layers.Dense(32, activation='relu'))
seq_model.add(layers.Dense(10, activation='softmax'))

input_tensor = Input(shape=(64,))
x = layers.Dense(32, activation='relu')(input_tensor)
x = layers.Dense(32, activation='relu')(x)
output_tensor = layers.Dense(10, activation='softmax')(x)
model = Model(input_tensor, output_tensor)
model.summary()

多输入模型

典型的问答模型有两个输入:一个自然语言描述的问题和一个文本片段(比如新闻文章),后者提供用于回答问题的信息。然后模型要生成一个回答,在最简单的情况下,这个回答只包含一个词,可以通过对某个预定义的词表做softmax 得到。
在这里插入图片描述

from keras.models import Model
from keras import layers
from keras import Input
text_vocabulary_size = 10000
question_vocabulary_size = 10000
answer_vocabulary_size = 500
#参考文本
text_input = Input(shape=(None,), 
 				   dtype='int32', 
 				   name='text')
embedded_text = layers.Embedding(text_vocabulary_size, 64)(text_input)
encoded_text = layers.LSTM(32)(embedded_text)
#问题
question_input = Input(shape=(None,),
                       dtype='int32',<
Keras是一个基于Python的深度学习库,提供了许多便捷的API用于神经网络的搭建Keras框架的特点是高度模块化、易于扩展、支持GPU和CPU的混合计算、用户友好,可以方便的构建各种神经网络模型并进行训练和预测。 在Keras搭建神经网络,首先需要确定神经网络的模型Keras支持多种模型构建方法,包括序列模型、函数式模型和子类化API等。 序列模型是最简单的一种,它是一个线性的神经网络模型,是多个网络层的线性堆叠,其中的每一层都是前一层的输出作为下一层的输入。可以用以下方式构建一个序列模型: ``` from keras.models import Sequential from keras.layers import Dense model = Sequential() model.add(Dense(units=32, activation='relu', input_dim=100)) model.add(Dense(units=10, activation='softmax')) ``` 函数式模型可以用于构建更复杂的模型,如多输入和多输出的神经网络。可以用以下方式构建一个函数式模型: ``` from keras.layers import Input, Dense from keras.models import Model # This returns a tensor inputs = Input(shape=(784,)) # a layer instance is callable on a tensor, and returns a tensor x = Dense(64, activation='relu')(inputs) x = Dense(64, activation='relu')(x) predictions = Dense(10, activation='softmax')(x) # This creates a model that includes # the Input layer and three Dense layers model = Model(inputs=inputs, outputs=predictions) model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) ``` 子类化API提供了更加灵活的构建方式,可以通过自定义网络层和模型的方式实现复杂的神经网络。可以用以下方式构建一个子类化API模型: ``` import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers class MyModel(keras.Model): def __init__(self): super(MyModel, self).__init__() self.dense1 = layers.Dense(64, activation='relu') self.dense2 = layers.Dense(64, activation='relu') self.dense3 = layers.Dense(10, activation='softmax') def call(self, inputs): x = self.dense1(inputs) x = self.dense2(x) x = self.dense3(x) return x model = MyModel() model.compile(optimizer=keras.optimizers.Adam(learning_rate=1e-3), loss=keras.losses.SparseCategoricalCrossentropy(), metrics=[keras.metrics.SparseCategoricalAccuracy()]) ``` 无论采用何种方式搭建神经网络,都需要进行模型的编译和训练。模型的编译需要指定优化器、损失函数和评估指标。模型的训练则需要指定训练集、验证集、批处理大小和训练轮数等参数。可以用以下方式训练和评估模型: ``` history = model.fit(x_train, y_train, batch_size=64, epochs=5, validation_data=(x_val, y_val)) test_scores = model.evaluate(x_test, y_test, verbose=2) print('Test loss:', test_scores[0]) print('Test accuracy:', test_scores[1]) ``` 以上是Keras搭建神经网络的基本流程,需要根据具体问题和数据集的不同进行调整和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值