【AIGC】人工智能训练师(高级)考试题库-橙点同学

在这里插入图片描述
解析:

  • A选项:高质量的数据通常包含更准确、更全面、更有代表性的信息,能够让模型更好地学习到数据中的模式和规律,从而训练出更好的模型,该选项正确。
  • B选项:同一模型中训练数据的样本如果不平衡,可能会导致模型对某些类别的数据过拟合或欠拟合,影响模型的泛化能力和准确性,所以训练数据样本需要有一定的平衡,该选项正确。
  • C选项:数据标签的正确性至关重要,如果标签错误,模型会基于错误的信息进行学习,必然会影响到模型的准确率,该选项正确。

因为A、B、C选项的说法都是正确的,所以正确答案是D.以上都对。
在这里插入图片描述
解析:

  • A选项:方言模型的构建往往需要从底层的词典建设开始,因为词典是语言模型的基础,该选项正确。
  • B选项:重口音的问题可以通过加强声学模型训练来改善,让模型更好地适应和识别不同口音,该选项正确。
  • C选项:方言和重口音确实有区别,方言涉及到词汇、语法等多个层面,而重口音主要是发音方面,所以优化方式不一样,该选项正确。
  • D选项:方言问题不仅仅是声学模型的问题,还涉及到词汇、语法等多方面,仅加强优化声学模型不能完全解决方言问题,该选项错误。

所以正确答案是D。
在这里插入图片描述
解析:

  • A选项:没有噪音数据可以减少数据中的干扰和错误,有利于提升数据质量,该选项正确。
  • B选项:训练数据样本平衡能使模型更全面地学习数据特征,避免因样本不平衡导致的偏差,有助于提升数据质量,该选项正确。
  • C选项:负向样本充足且种类丰富,可以让模型更好地学习到各种情况,提高模型的泛化能力和准确性,从而提升数据质量,该选项正确。

因为A、B、C选项的说法都对提升数据质量有帮助,所以正确答案是D.以上都是。
在这里插入图片描述
考查的是TTS(Text To Speech,文本到语音)中把数字变成汉字的相关模块知识。
解析:

  • A选项:文本归整模块主要负责对输入的文本进行规范化处理,其中包括将数字转换为汉字等操作,该选项正确。
  • B选项:停顿模型主要是用于确定语音输出时的停顿位置和时长,与数字变成汉字无关,该选项错误。
  • C选项:获取读音是根据处理后的文本获取对应的发音信息,而不是进行数字到汉字的转换,该选项错误。
  • D选项:分句模块是将文本划分为合适的句子,以便后续处理,不涉及数字到汉字的转换,该选项错误。

所以正确答案是A.文本归整模块。
在这里插入图片描述
考查模型召回率的计算公式。
解析:

  • 召回率(Recall)的计算公式是: R E C A L L = T P / ( T P + F N ) RECALL = TP / (TP + FN) RECALL=TP/(TP+FN),其中 T P TP TP(True Positive)表示真正例,即实际为正例且被预测为正例的样本数; F N FN FN(False Negative)表示假反例,即实际为正例但被预测为反例的样本数。

所以正确答案是A。

B选项中 R E C A L L = T P / ( T P + F P ) RECALL = TP / (TP + FP) RECALL=TP/(TP+FP)是准确率(Precision)的计算公式,其中 F P FP FP(False Positive)表示假正例,即实际为反例但被预测为正例的样本数。

C选项和D选项的公式均不是召回率的正确计算公式。
在这里插入图片描述
考查关于SSML(Speech Synthesis Markup Language,语音合成标记语言)的相关知识。

解析:

  • SSML是一种用于标记文本内容的语言,通过对文本内容进行格式化标记,可以控制语音合成的许多方面,如发音、语速、语调、音量等。

所以正确答案是C。

A选项中“标准”表述不准确,且“简单”也不符合SSML的功能特点。

B选项“标准”表述不恰当,“复杂”也不能准确描述SSML的作用。

D选项“通用性”不是SSML标记的主要特点,且与控制语音生成方面的表述不相关。
在这里插入图片描述
考查分类模型适用的场景。

解析:

  • 分类模型主要用于将数据划分到不同的类别中。开发票流程可以根据不同的业务类型、发票类型等进行分类,适合用分类模型来解决,例如区分增值税发票、普通发票等不同类型的发票流程。
  • 反馈电话号码、反馈订单编号、发送宝贝链接这些场景主要是信息的记录和传递,并不涉及到对数据进行分类处理。

所以正确答案是A。
在这里插入图片描述
解析

  • 正确答案:A

  • 解析

    • 首先分析识别文本与标注文本的差异,存在三个替换错误(“我”替换为“吾”、“喜欢”替换为“喜爱”、“排球”替换为“拍球”)和一个插入错误(“哦”),总共错误数为(4)个。
    • 标注文本的总字数为/( 10 /)个。
    • 根据字符错误率(CER)的计算公式,CER =\frac{错误字符数} {总字符数 =\frac{4}{10} = 40/%/)。
    • 字准确率 = (100% - CER = 100% - 40% = 60% = 0.6),所以答案选A。
  • 正确答案:A

  • 解析

    • 首先分析识别文本与标注文本的差异,存在三个替换错误(“我”替换为“吾”、“喜欢”替换为“喜爱”、“排球”替换为“拍球”)和一个插入错误(“哦”),总共错误数为(4)个。
    • 标注文本的总字数为(10)个。
    • 根据字符错误率(CER)的计算公式, C E R = 错误字符数 总字符数 = 4 10 = 40 % CER = \frac{错误字符数}{总字符数} = \frac{4}{10} = 40\% CER=总字符数错误字符数=104=40%
    • 字准确率 = 100% - CER = 100% - 40% = 60% = 0.6
    • 所以答案选A。

1在这里插入图片描述
解析:

  • A选项“我忘记蜜码了”中“蜜码”应为“密码”,是关于密码遗忘的表述。
  • B选项“输了好多次都提示密码错误”和C选项“为什么总是提示密码错误”,都是在说密码输入错误的情况。
  • D选项“如何设置密码”,是关于密码设置的内容,与其他三个选项关于密码使用过程中出现问题的分类不一致。

所以正确答案是D。
在这里插入图片描述
解析

  • 正确答案:C
  • 解析:书箱分类通常可以依据多个维度来进行,比如出版社、语言类型、内容类型等。这意味着一本书箱可以同时被贴上多个不同维度的标签,例如某一书箱可以同时被标记为“某出版社出版”“英语书籍”“文学类”等,这种可以同时具有多个不同类别标签的情况符合多标签分类的特点。而二分类是将对象分为两类;多分类是将对象分为多个互斥的类别;多模态是指多种数据模态,与本题书箱分类的任务类型不符。所以书箱分类的标签算是多标签分类任务,答案选C。
    在这里插入图片描述
    解析:
  • 准确率 = (预测正确的数量)/(总数据量)× 100% = 5 / 10 × 100% = 50%。
  • 精准率 = (预测正确的数量)/(预测有结果的数量)× 100% = 5 / 6 × 100% ≈ 83.3%。

所以正确答案是A。

准确率是看在所有数据中预测正确的比例,而精准率是看在有预测结果的数据中预测正确的比例。本题中总数据量为10,预测正确的是5条,所以准确率为50%;预测有结果的为6条,其中正确的是5条,所以精准率约为83.3%。
在这里插入图片描述
解析:

  • A选项“垃圾邮件判别——是/否”,这是二分类问题,只有两种结果,不属于多标签分类。
  • B选项“情绪识别——愤怒/高兴/平静”,这是多分类问题,将情绪分为不同的类别,但每个样本通常只属于其中一个类别,不属于多标签分类。
  • C选项“新闻主题标签——体育,C罗,欧冠”,一条新闻可能同时涉及体育、C罗、欧冠等多个标签,属于多标签分类。

所以正确答案是C。多标签分类是指一个样本可以同时属于多个类别或具有多个标签,而其他选项要么是二分类,要么是单标签的多分类,不符合多标签分类的特点。
在这里插入图片描述
解析:

  • A选项:构建数据标签时,不仅要保证正例样本正确,负例样本同样重要,否则模型可能会出现偏差,该选项错误。
  • B选项:负例样本对于模型的训练和评估非常关键,能帮助模型更好地学习数据的特征和边界,该选项错误。
  • C选项:构建数据标签确实需要考虑业务/行业等属性,因为不同的业务和行业有其特定的规则和特点,需要具备一定的业务知识才能准确地进行标签构建,该选项正确。
  • D选项:构建数据标签范围并非越小越好,过小的范围可能会导致模型过拟合,无法很好地泛化到其他数据上,该选项错误。

所以正确答案是C。
在这里插入图片描述
解析:

  • “南京市长江大桥”是一个特定的地名,指的是位于南京市的长江大桥,正确的分词应该是“南京市/长江大桥”,这样能准确表达其含义。
  • A选项“南京/市长/江大桥”,将“市长”单独分词,不符合原意。
  • C选项“南京/市/长江/大桥”,把“南京市”拆分开,也不准确。
  • D选项“南京/市/长江/大/桥”,过度拆分,没有正确表达整体概念。

所以正确答案是B。
在这里插入图片描述
解析

  • 正确答案:A
  • 解析:TTS(Text To Speech,文本到语音)在处理一个段落时会进行文本正则,将一些数字、符号以及干扰合成的无意义内容归整掉,最终得到干净的汉字加标点符号的文本内容。在本题中,需要把“2岁了”归整为“两岁了”,如果写成“二岁了”会出现读音错误,所以经过归整后的正确结果是A选项“小男孩两岁了,第一次和奶奶一起旅行”。
    在这里插入图片描述
    解析:
  • A选项:增加的数据量并非越多越好,如果数据质量差,过多的数据可能会引入更多噪声,影响模型效果,该选项错误。
  • B选项:增加高质量的数据可以让模型学习到更准确、更有价值的信息,从而提升模型效果,该选项正确。
  • C选项:增加丰富的数据类型在一定程度上有助于模型的泛化,但如果数据质量不高,也不一定能带来好的效果,相比之下,数据质量更为关键,该选项不准确。
  • D选项:模型的正负样本量会影响模型效果,不平衡的正负样本可能导致模型偏向某一类,影响准确性和泛化能力,该选项错误。

所以正确答案是B。
在这里插入图片描述解析:

  • A选项“插入错误”是指识别结果中出现了实际语音中没有的内容,与题目描述不符,该选项错误。
  • B选项“删除错误”是指实际语音中有但识别结果中缺失了某些内容,与题目情况不同,该选项错误。
  • C选项“替换错误”是指实际语音中有,识别结果里面也有,但字错误了,符合题目所描述的情况,该选项正确。
  • D选项“识别错误”表述太宽泛,没有准确指出具体的错误类型,该选项错误。

所以正确答案是C。
在这里插入图片描述
解析:

  • A选项“分词模型”主要负责将文本分割成词,它的作用是为后续处理提供基础,一般不会直接导致读音错误。
  • B选项“停顿模型”是用于确定语音输出时的停顿位置和时长,与读音本身的准确性关系不大。
  • C选项“获取读音”模块是直接获取每个字词的发音,如果这个模块出现问题,比如发音库不准确、发音规则错误等,很容易造成读音错误,该选项正确。
  • D选项“分句模块”是将文本划分为合适的句子,主要影响语音的节奏和连贯性,而非读音的准确性。

所以正确答案是C。
在这里插入图片描述
解析

  • 正确答案:B
  • 解析:CER(Character Error Rate,字符错误率)的计算通常是基于一定的规则。一般来说,删除错误和替换错误的数量是相对确定的,它们不可能超过标注文本的总量。然而,插入错误是不确定的,因为可以无限制地插入错误字符,所以当插入错误较多的时候,CER字错误率就有可能会超过100%。例如,假设标注文本只有10个字符,但由于插入错误,识别结果中出现了20个错误字符,那么CER字错误率就会超过100%。而删除错误和替换错误最多只能使错误字符数等于标注文本总量,无法超过这个总量,也就不会使CER字错误率超过100%。在这里插入图片描述
    解析
  • 正确答案:D
  • 解析
    • A选项中,“账户登录不上了”的原因有很多,不只是“账户被盗”,该签标范围过大,与原始文本内容的相关性和确定性不够准确。
    • B选项里,“怎么还不回复我”只是表达了催促的意思,但没有注明催促的对象,签标范围比较宽泛,不够具体明确。
    • C选项中,“怎么恢复我的聊天记录内容”,仅用“恢复钉钉内容”作为签标,而文本内容未提及是何种产品的聊天记录,在产品未知的情况下,这个签标范围过大,且缺乏针对性。
    • D选项中,“怎么开发票呀”,签标“开票流程”与原始文本内容紧密相关,且定义范围明确,确定性高,是最合适的一组。
      在这里插入图片描述
      解析:
      用户画像通常会包含多个维度的信息和标签,比如用户的年龄、性别、兴趣爱好、消费习惯、职业等,这些标签可以同时存在于一个用户画像中,所以用户画像是属于多标签分类的。

答案:A. 正确。

例如,一个用户画像可能同时有“25岁”“女性”“喜欢旅游”“经常网购”等多个标签,这符合多标签分类的特点,即一个对象可以同时具有多个不同的标签。
在这里插入图片描述
解析:
声音转文字很难达到100%的准确率,因为可能会受到多种因素的影响,如说话人的口音、语速、环境噪音、语言的复杂性等。即使模型在很多情况下表现良好,但由于这些不可控因素,也可能无法达到100%的准确率,不能仅仅因为没有达到100%就判定模型不行。

答案:B. 错误。

例如,在嘈杂的环境中进行声音转文字,即使是优秀的模型也可能会出现一些错误,但这并不意味着该模型本身质量差,在其他较为理想的环境下,它可能会有很好的表现。所以不能仅依据是否达到100%来评判模型的好坏。
在这里插入图片描述
考查关于SSML(Speech Synthesis Markup Language,语音合成标记语言)的相关知识。
解析:
SSML是一种用于标记文本内容以控制语音合成的语言,它确实是W3C(World Wide Web Consortium,万维网联盟)的语音接口框架的一部分,用于规范语音合成的相关标记和功能。

答案:A. 正确。

例如,在一些语音应用和系统中,会使用SSML来实现对语音合成的精细控制,如调整语速、语调、音量等,而这些应用和系统的开发往往会遵循W3C的相关标准和框架,其中就包括SSML这一语音合成标记语言。
在这里插入图片描述
解析

  • 正确答案:B. 错误
  • 解析:文本语言生成在神经网络模型上确实存在一字随机性,但是这种随机性可能会带来一些不可控的风险。例如,在某些特定场景下,模型生成的随机字词可能会导致语义偏差、误解甚至违反某些规则或伦理要求,而这些风险很难完全通过技术手段进行精准控制和消除。所以说文本语言生成在神经网络模型上存在不可控的风险,题目中说风险是可控的是错误的。
    在这里插入图片描述
    解析:
    在TTS技术中,speech_rate通常是用于控制语速的参数。通过调整speech_rate的值,可以实现对语音合成语速的快慢调整。例如,增大speech_rate的值可以加快语速,减小其值则可以减慢语速。

答案:A. 正确。

许多TTS系统和工具都提供了这样的参数设置功能,以便用户根据自己的需求和偏好来调整语音输出的语速,从而获得更好的听觉体验。
在这里插入图片描述
解析:
分类任务主要包括二分类(将样本分为两类)、多分类(将样本分为多个互斥的类别)和多标签分类(一个样本可以同时属于多个类别),这三种分类任务涵盖了常见的分类情况。

答案:A. 正确。

例如,判断邮件是否为垃圾邮件是二分类;将动物分为猫、狗、鸟等是多分类;而给一篇文章同时打上科技、教育、娱乐等多个标签就是多标签分类,这些都属于不同类型的分类任务。
在这里插入图片描述
解析:
数据标记时并不只能对原始数据添加一个标签,在很多情况下,尤其是多标签分类等任务中,是可以对原始数据添加多个标签的,以更全面地描述数据的特征和属性。

答案:B. 错误。

例如,对于一张图片,可能同时标记为“动物”“猫”“白色”等多个标签,而不是仅仅局限于一个标签,这样可以为后续的数据处理和分析提供更丰富的信息。
在这里插入图片描述
解析:
删除错误的定义就是实际语音中存在某个内容,但在识别结果中却没有出现,这与题目中所描述的完全一致。

答案:A. 正确。

例如,说话人说了“今天天气很好”,而语音识别结果为“今天气很好”,这里“天”字在实际语音中有,但在识别结果里被“删除”了,这就是典型的删除错误。
在这里插入图片描述
考查关于ASR(Automatic Speech Recognition,自动语音识别)和TTS(Text To Speech,文本到语音)的特点。

解析:

  • ASR模型主要是将语音转换为文本,其目的是准确识别语音内容,通常是对语音信号进行处理和分析,而不是针对不同的人进行区别,只要是符合其训练范围内的普通话语音,都可以进行识别。
  • TTS则是将文本转换为语音,通过技术可以实现不同音色、语调等效果,能够做到“千人千面”,让每一个人的声音都不一样,以满足不同的应用场景和需求。

答案:A. 正确。

例如,在使用语音助手时,ASR模型会尽力识别不同人说的普通话指令,而不管是谁说的;而一些有声读物或语音播报系统中,TTS可以模拟出各种不同风格和特点的声音,就像不同的人在说话一样。
在这里插入图片描述
考查召回率(Recall Rate)的概念。

解析:
召回率(Recall Rate)的确是检索出的相关文档数和文档库中所有的相关文档数的比率,它主要用于衡量检索系统的查全率,即检索系统能够检索出的相关文档占所有相关文档的比例。

答案:A. 正确。

例如,在一个文档库中有100篇相关文档,通过检索系统检索出了80篇相关文档,那么召回率就是80%,这反映了检索系统在查找所有相关文档方面的能力。
在这里插入图片描述
解析:

  • A选项“拼写错误”:TTS是将文本转换为语音,一般不涉及拼写方面的问题,该选项错误。
  • B选项“识别错误”:TTS主要是文本到语音的合成,不是识别过程,不存在识别错误,该选项错误。
  • C选项“读音错误”:这是TTS常见的错误之一,例如多音字读错、生僻字读音不准确等,该选项正确。
  • D选项“停顿错误”:在语音合成过程中,可能会出现停顿不恰当的情况,比如该停顿的地方没有停顿,或者不该停顿的地方停顿了,这也是TTS常见的错误,该选项正确。

答案:CD。

例如,在TTS输出“下雨天留客天留我不留”这句话时,可能会把“留客”的停顿弄错,或者把“行(xíng)走”读成“行(háng)走”,这些都是TTS常见的错误类型。
在这里插入图片描述
解析:

  • A选项:一般来说,建立语音评测集需要一定量的有效数据,1 - 2小时的有效数据是比较常见的要求,这样可以保证评测集具有一定的规模和代表性,该选项正确。
  • B选项:数据应能反映业务的真实情况,这样才能使评测集更符合实际应用场景,对语音相关的业务或系统进行有效的评估,该选项正确。
  • C选项:建立语音评测集不仅仅只需要有语音内容,还需要考虑数据的质量、多样性、代表性等多方面因素,该选项错误。
  • D选项:数据具有一定的随机性和代表性是很重要的,这样可以避免评测集的偏差,更全面地评估语音相关的性能和效果,该选项正确。

答案:ABD。

例如,在建立一个用于评估语音识别系统在客服场景下的评测集时,需要收集1 - 2小时客服人员与客户交流的真实语音数据,这些数据要涵盖不同的客户口音、语速、情绪等,具有随机性和代表性,而不是仅仅有语音内容就行。
在这里插入图片描述
解析:

  • A选项:类与类之间的边界清晰,有助于数据的准确分类和模型的有效学习,能提高数据质量,该选项正确。
  • B选项:B类型是A类别的子项且同时存在于一个模型,可能会导致数据的混淆和模型的复杂性增加,不利于提高数据质量,该选项错误。
  • C选项:A类别数据丰富,B类别只有十几条数据,会造成数据的不平衡,影响模型的训练和数据质量,该选项错误。
  • D选项:整理正向样本的同时输入丰富的负向样本,可以使数据更加全面和平衡,有助于模型更好地学习和泛化,从而提高数据质量,该选项正确。

答案:AD。

例如,在一个图像分类任务中,如果猫和狗的类别边界清晰,模型就能更好地学习和区分它们;同时,提供大量猫和狗的图片(正向样本)以及其他动物或非动物的图片(负向样本),能让模型更准确地识别猫和狗,得到质量更高的数据。而如果把猫的不同品种(如波斯猫是猫的子项)混在一起且数据量差异大,会影响数据质量和模型效果。
在这里插入图片描述
解析:
无噪音数据通常是指清晰、明确、没有干扰信息的数据。选项B“好了哦”、C“去火车站怎么走”、D“今天天气怎么样”都是比较清晰、明确的语句,没有其他干扰性的背景噪音或无关信息,都可以算是没有噪音的数据。而选项A由于内容缺失,无法判断其是否为无噪音数据。而选项 B “好了哦” 相对比较简单和模糊,完整性和明确性稍弱一些。

答案:CD。

例如,在语音识别等场景中,像“去火车站怎么走”这样的语音指令,没有其他嘈杂的背景声音或模糊不清的表述,就属于无噪音的数据,有利于系统准确地进行处理和分析。

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RisunJan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值