解析:
- A选项:高质量的数据通常包含更准确、更全面、更有代表性的信息,能够让模型更好地学习到数据中的模式和规律,从而训练出更好的模型,该选项正确。
- B选项:同一模型中训练数据的样本如果不平衡,可能会导致模型对某些类别的数据过拟合或欠拟合,影响模型的泛化能力和准确性,所以训练数据样本需要有一定的平衡,该选项正确。
- C选项:数据标签的正确性至关重要,如果标签错误,模型会基于错误的信息进行学习,必然会影响到模型的准确率,该选项正确。
因为A、B、C选项的说法都是正确的,所以正确答案是D.以上都对。
解析:
- A选项:方言模型的构建往往需要从底层的词典建设开始,因为词典是语言模型的基础,该选项正确。
- B选项:重口音的问题可以通过加强声学模型训练来改善,让模型更好地适应和识别不同口音,该选项正确。
- C选项:方言和重口音确实有区别,方言涉及到词汇、语法等多个层面,而重口音主要是发音方面,所以优化方式不一样,该选项正确。
- D选项:方言问题不仅仅是声学模型的问题,还涉及到词汇、语法等多方面,仅加强优化声学模型不能完全解决方言问题,该选项错误。
所以正确答案是D。
解析:
- A选项:没有噪音数据可以减少数据中的干扰和错误,有利于提升数据质量,该选项正确。
- B选项:训练数据样本平衡能使模型更全面地学习数据特征,避免因样本不平衡导致的偏差,有助于提升数据质量,该选项正确。
- C选项:负向样本充足且种类丰富,可以让模型更好地学习到各种情况,提高模型的泛化能力和准确性,从而提升数据质量,该选项正确。
因为A、B、C选项的说法都对提升数据质量有帮助,所以正确答案是D.以上都是。
考查的是TTS(Text To Speech,文本到语音)中把数字变成汉字的相关模块知识。
解析:
- A选项:文本归整模块主要负责对输入的文本进行规范化处理,其中包括将数字转换为汉字等操作,该选项正确。
- B选项:停顿模型主要是用于确定语音输出时的停顿位置和时长,与数字变成汉字无关,该选项错误。
- C选项:获取读音是根据处理后的文本获取对应的发音信息,而不是进行数字到汉字的转换,该选项错误。
- D选项:分句模块是将文本划分为合适的句子,以便后续处理,不涉及数字到汉字的转换,该选项错误。
所以正确答案是A.文本归整模块。
考查模型召回率的计算公式。
解析:
- 召回率(Recall)的计算公式是: R E C A L L = T P / ( T P + F N ) RECALL = TP / (TP + FN) RECALL=TP/(TP+FN),其中 T P TP TP(True Positive)表示真正例,即实际为正例且被预测为正例的样本数; F N FN FN(False Negative)表示假反例,即实际为正例但被预测为反例的样本数。
所以正确答案是A。
B选项中 R E C A L L = T P / ( T P + F P ) RECALL = TP / (TP + FP) RECALL=TP/(TP+FP)是准确率(Precision)的计算公式,其中 F P FP FP(False Positive)表示假正例,即实际为反例但被预测为正例的样本数。
C选项和D选项的公式均不是召回率的正确计算公式。
考查关于SSML(Speech Synthesis Markup Language,语音合成标记语言)的相关知识。
解析:
- SSML是一种用于标记文本内容的语言,通过对文本内容进行格式化标记,可以控制语音合成的许多方面,如发音、语速、语调、音量等。
所以正确答案是C。
A选项中“标准”表述不准确,且“简单”也不符合SSML的功能特点。
B选项“标准”表述不恰当,“复杂”也不能准确描述SSML的作用。
D选项“通用性”不是SSML标记的主要特点,且与控制语音生成方面的表述不相关。
考查分类模型适用的场景。
解析:
- 分类模型主要用于将数据划分到不同的类别中。开发票流程可以根据不同的业务类型、发票类型等进行分类,适合用分类模型来解决,例如区分增值税发票、普通发票等不同类型的发票流程。
- 反馈电话号码、反馈订单编号、发送宝贝链接这些场景主要是信息的记录和传递,并不涉及到对数据进行分类处理。
所以正确答案是A。
解析
-
正确答案:A
-
解析:
- 首先分析识别文本与标注文本的差异,存在三个替换错误(“我”替换为“吾”、“喜欢”替换为“喜爱”、“排球”替换为“拍球”)和一个插入错误(“哦”),总共错误数为(4)个。
- 标注文本的总字数为/( 10 /)个。
- 根据字符错误率(CER)的计算公式,CER =\frac{错误字符数} {总字符数 =\frac{4}{10} = 40/%/)。
- 字准确率 = (100% - CER = 100% - 40% = 60% = 0.6),所以答案选A。
-
正确答案:A
-
解析:
- 首先分析识别文本与标注文本的差异,存在三个替换错误(“我”替换为“吾”、“喜欢”替换为“喜爱”、“排球”替换为“拍球”)和一个插入错误(“哦”),总共错误数为(4)个。
- 标注文本的总字数为(10)个。
- 根据字符错误率(CER)的计算公式, C E R = 错误字符数 总字符数 = 4 10 = 40 % CER = \frac{错误字符数}{总字符数} = \frac{4}{10} = 40\% CER=总字符数错误字符数=104=40%
- 字准确率 = 100% - CER = 100% - 40% = 60% = 0.6
- 所以答案选A。
1
解析:
- A选项“我忘记蜜码了”中“蜜码”应为“密码”,是关于密码遗忘的表述。
- B选项“输了好多次都提示密码错误”和C选项“为什么总是提示密码错误”,都是在说密码输入错误的情况。
- D选项“如何设置密码”,是关于密码设置的内容,与其他三个选项关于密码使用过程中出现问题的分类不一致。
所以正确答案是D。
解析
- 正确答案:C
- 解析:书箱分类通常可以依据多个维度来进行,比如出版社、语言类型、内容类型等。这意味着一本书箱可以同时被贴上多个不同维度的标签,例如某一书箱可以同时被标记为“某出版社出版”“英语书籍”“文学类”等,这种可以同时具有多个不同类别标签的情况符合多标签分类的特点。而二分类是将对象分为两类;多分类是将对象分为多个互斥的类别;多模态是指多种数据模态,与本题书箱分类的任务类型不符。所以书箱分类的标签算是多标签分类任务,答案选C。
解析: - 准确率 = (预测正确的数量)/(总数据量)× 100% = 5 / 10 × 100% = 50%。
- 精准率 = (预测正确的数量)/(预测有结果的数量)× 100% = 5 / 6 × 100% ≈ 83.3%。
所以正确答案是A。
准确率是看在所有数据中预测正确的比例,而精准率是看在有预测结果的数据中预测正确的比例。本题中总数据量为10,预测正确的是5条,所以准确率为50%;预测有结果的为6条,其中正确的是5条,所以精准率约为83.3%。
解析:
- A选项“垃圾邮件判别——是/否”,这是二分类问题,只有两种结果,不属于多标签分类。
- B选项“情绪识别——愤怒/高兴/平静”,这是多分类问题,将情绪分为不同的类别,但每个样本通常只属于其中一个类别,不属于多标签分类。
- C选项“新闻主题标签——体育,C罗,欧冠”,一条新闻可能同时涉及体育、C罗、欧冠等多个标签,属于多标签分类。
所以正确答案是C。多标签分类是指一个样本可以同时属于多个类别或具有多个标签,而其他选项要么是二分类,要么是单标签的多分类,不符合多标签分类的特点。
解析:
- A选项:构建数据标签时,不仅要保证正例样本正确,负例样本同样重要,否则模型可能会出现偏差,该选项错误。
- B选项:负例样本对于模型的训练和评估非常关键,能帮助模型更好地学习数据的特征和边界,该选项错误。
- C选项:构建数据标签确实需要考虑业务/行业等属性,因为不同的业务和行业有其特定的规则和特点,需要具备一定的业务知识才能准确地进行标签构建,该选项正确。
- D选项:构建数据标签范围并非越小越好,过小的范围可能会导致模型过拟合,无法很好地泛化到其他数据上,该选项错误。
所以正确答案是C。
解析:
- “南京市长江大桥”是一个特定的地名,指的是位于南京市的长江大桥,正确的分词应该是“南京市/长江大桥”,这样能准确表达其含义。
- A选项“南京/市长/江大桥”,将“市长”单独分词,不符合原意。
- C选项“南京/市/长江/大桥”,把“南京市”拆分开,也不准确。
- D选项“南京/市/长江/大/桥”,过度拆分,没有正确表达整体概念。
所以正确答案是B。
解析
- 正确答案:A
- 解析:TTS(Text To Speech,文本到语音)在处理一个段落时会进行文本正则,将一些数字、符号以及干扰合成的无意义内容归整掉,最终得到干净的汉字加标点符号的文本内容。在本题中,需要把“2岁了”归整为“两岁了”,如果写成“二岁了”会出现读音错误,所以经过归整后的正确结果是A选项“小男孩两岁了,第一次和奶奶一起旅行”。
解析: - A选项:增加的数据量并非越多越好,如果数据质量差,过多的数据可能会引入更多噪声,影响模型效果,该选项错误。
- B选项:增加高质量的数据可以让模型学习到更准确、更有价值的信息,从而提升模型效果,该选项正确。
- C选项:增加丰富的数据类型在一定程度上有助于模型的泛化,但如果数据质量不高,也不一定能带来好的效果,相比之下,数据质量更为关键,该选项不准确。
- D选项:模型的正负样本量会影响模型效果,不平衡的正负样本可能导致模型偏向某一类,影响准确性和泛化能力,该选项错误。
所以正确答案是B。
解析:
- A选项“插入错误”是指识别结果中出现了实际语音中没有的内容,与题目描述不符,该选项错误。
- B选项“删除错误”是指实际语音中有但识别结果中缺失了某些内容,与题目情况不同,该选项错误。
- C选项“替换错误”是指实际语音中有,识别结果里面也有,但字错误了,符合题目所描述的情况,该选项正确。
- D选项“识别错误”表述太宽泛,没有准确指出具体的错误类型,该选项错误。
所以正确答案是C。
解析:
- A选项“分词模型”主要负责将文本分割成词,它的作用是为后续处理提供基础,一般不会直接导致读音错误。
- B选项“停顿模型”是用于确定语音输出时的停顿位置和时长,与读音本身的准确性关系不大。
- C选项“获取读音”模块是直接获取每个字词的发音,如果这个模块出现问题,比如发音库不准确、发音规则错误等,很容易造成读音错误,该选项正确。
- D选项“分句模块”是将文本划分为合适的句子,主要影响语音的节奏和连贯性,而非读音的准确性。
所以正确答案是C。
解析
- 正确答案:B
- 解析:CER(Character Error Rate,字符错误率)的计算通常是基于一定的规则。一般来说,删除错误和替换错误的数量是相对确定的,它们不可能超过标注文本的总量。然而,插入错误是不确定的,因为可以无限制地插入错误字符,所以当插入错误较多的时候,CER字错误率就有可能会超过100%。例如,假设标注文本只有10个字符,但由于插入错误,识别结果中出现了20个错误字符,那么CER字错误率就会超过100%。而删除错误和替换错误最多只能使错误字符数等于标注文本总量,无法超过这个总量,也就不会使CER字错误率超过100%。
解析 - 正确答案:D
- 解析:
- A选项中,“账户登录不上了”的原因有很多,不只是“账户被盗”,该签标范围过大,与原始文本内容的相关性和确定性不够准确。
- B选项里,“怎么还不回复我”只是表达了催促的意思,但没有注明催促的对象,签标范围比较宽泛,不够具体明确。
- C选项中,“怎么恢复我的聊天记录内容”,仅用“恢复钉钉内容”作为签标,而文本内容未提及是何种产品的聊天记录,在产品未知的情况下,这个签标范围过大,且缺乏针对性。
- D选项中,“怎么开发票呀”,签标“开票流程”与原始文本内容紧密相关,且定义范围明确,确定性高,是最合适的一组。
解析:
用户画像通常会包含多个维度的信息和标签,比如用户的年龄、性别、兴趣爱好、消费习惯、职业等,这些标签可以同时存在于一个用户画像中,所以用户画像是属于多标签分类的。
答案:A. 正确。
例如,一个用户画像可能同时有“25岁”“女性”“喜欢旅游”“经常网购”等多个标签,这符合多标签分类的特点,即一个对象可以同时具有多个不同的标签。
解析:
声音转文字很难达到100%的准确率,因为可能会受到多种因素的影响,如说话人的口音、语速、环境噪音、语言的复杂性等。即使模型在很多情况下表现良好,但由于这些不可控因素,也可能无法达到100%的准确率,不能仅仅因为没有达到100%就判定模型不行。
答案:B. 错误。
例如,在嘈杂的环境中进行声音转文字,即使是优秀的模型也可能会出现一些错误,但这并不意味着该模型本身质量差,在其他较为理想的环境下,它可能会有很好的表现。所以不能仅依据是否达到100%来评判模型的好坏。
考查关于SSML(Speech Synthesis Markup Language,语音合成标记语言)的相关知识。
解析:
SSML是一种用于标记文本内容以控制语音合成的语言,它确实是W3C(World Wide Web Consortium,万维网联盟)的语音接口框架的一部分,用于规范语音合成的相关标记和功能。
答案:A. 正确。
例如,在一些语音应用和系统中,会使用SSML来实现对语音合成的精细控制,如调整语速、语调、音量等,而这些应用和系统的开发往往会遵循W3C的相关标准和框架,其中就包括SSML这一语音合成标记语言。
解析
- 正确答案:B. 错误
- 解析:文本语言生成在神经网络模型上确实存在一字随机性,但是这种随机性可能会带来一些不可控的风险。例如,在某些特定场景下,模型生成的随机字词可能会导致语义偏差、误解甚至违反某些规则或伦理要求,而这些风险很难完全通过技术手段进行精准控制和消除。所以说文本语言生成在神经网络模型上存在不可控的风险,题目中说风险是可控的是错误的。
解析:
在TTS技术中,speech_rate
通常是用于控制语速的参数。通过调整speech_rate
的值,可以实现对语音合成语速的快慢调整。例如,增大speech_rate
的值可以加快语速,减小其值则可以减慢语速。
答案:A. 正确。
许多TTS系统和工具都提供了这样的参数设置功能,以便用户根据自己的需求和偏好来调整语音输出的语速,从而获得更好的听觉体验。
解析:
分类任务主要包括二分类(将样本分为两类)、多分类(将样本分为多个互斥的类别)和多标签分类(一个样本可以同时属于多个类别),这三种分类任务涵盖了常见的分类情况。
答案:A. 正确。
例如,判断邮件是否为垃圾邮件是二分类;将动物分为猫、狗、鸟等是多分类;而给一篇文章同时打上科技、教育、娱乐等多个标签就是多标签分类,这些都属于不同类型的分类任务。
解析:
数据标记时并不只能对原始数据添加一个标签,在很多情况下,尤其是多标签分类等任务中,是可以对原始数据添加多个标签的,以更全面地描述数据的特征和属性。
答案:B. 错误。
例如,对于一张图片,可能同时标记为“动物”“猫”“白色”等多个标签,而不是仅仅局限于一个标签,这样可以为后续的数据处理和分析提供更丰富的信息。
解析:
删除错误的定义就是实际语音中存在某个内容,但在识别结果中却没有出现,这与题目中所描述的完全一致。
答案:A. 正确。
例如,说话人说了“今天天气很好”,而语音识别结果为“今天气很好”,这里“天”字在实际语音中有,但在识别结果里被“删除”了,这就是典型的删除错误。
考查关于ASR(Automatic Speech Recognition,自动语音识别)和TTS(Text To Speech,文本到语音)的特点。
解析:
- ASR模型主要是将语音转换为文本,其目的是准确识别语音内容,通常是对语音信号进行处理和分析,而不是针对不同的人进行区别,只要是符合其训练范围内的普通话语音,都可以进行识别。
- TTS则是将文本转换为语音,通过技术可以实现不同音色、语调等效果,能够做到“千人千面”,让每一个人的声音都不一样,以满足不同的应用场景和需求。
答案:A. 正确。
例如,在使用语音助手时,ASR模型会尽力识别不同人说的普通话指令,而不管是谁说的;而一些有声读物或语音播报系统中,TTS可以模拟出各种不同风格和特点的声音,就像不同的人在说话一样。
考查召回率(Recall Rate)的概念。
解析:
召回率(Recall Rate)的确是检索出的相关文档数和文档库中所有的相关文档数的比率,它主要用于衡量检索系统的查全率,即检索系统能够检索出的相关文档占所有相关文档的比例。
答案:A. 正确。
例如,在一个文档库中有100篇相关文档,通过检索系统检索出了80篇相关文档,那么召回率就是80%,这反映了检索系统在查找所有相关文档方面的能力。
解析:
- A选项“拼写错误”:TTS是将文本转换为语音,一般不涉及拼写方面的问题,该选项错误。
- B选项“识别错误”:TTS主要是文本到语音的合成,不是识别过程,不存在识别错误,该选项错误。
- C选项“读音错误”:这是TTS常见的错误之一,例如多音字读错、生僻字读音不准确等,该选项正确。
- D选项“停顿错误”:在语音合成过程中,可能会出现停顿不恰当的情况,比如该停顿的地方没有停顿,或者不该停顿的地方停顿了,这也是TTS常见的错误,该选项正确。
答案:CD。
例如,在TTS输出“下雨天留客天留我不留”这句话时,可能会把“留客”的停顿弄错,或者把“行(xíng)走”读成“行(háng)走”,这些都是TTS常见的错误类型。
解析:
- A选项:一般来说,建立语音评测集需要一定量的有效数据,1 - 2小时的有效数据是比较常见的要求,这样可以保证评测集具有一定的规模和代表性,该选项正确。
- B选项:数据应能反映业务的真实情况,这样才能使评测集更符合实际应用场景,对语音相关的业务或系统进行有效的评估,该选项正确。
- C选项:建立语音评测集不仅仅只需要有语音内容,还需要考虑数据的质量、多样性、代表性等多方面因素,该选项错误。
- D选项:数据具有一定的随机性和代表性是很重要的,这样可以避免评测集的偏差,更全面地评估语音相关的性能和效果,该选项正确。
答案:ABD。
例如,在建立一个用于评估语音识别系统在客服场景下的评测集时,需要收集1 - 2小时客服人员与客户交流的真实语音数据,这些数据要涵盖不同的客户口音、语速、情绪等,具有随机性和代表性,而不是仅仅有语音内容就行。
解析:
- A选项:类与类之间的边界清晰,有助于数据的准确分类和模型的有效学习,能提高数据质量,该选项正确。
- B选项:B类型是A类别的子项且同时存在于一个模型,可能会导致数据的混淆和模型的复杂性增加,不利于提高数据质量,该选项错误。
- C选项:A类别数据丰富,B类别只有十几条数据,会造成数据的不平衡,影响模型的训练和数据质量,该选项错误。
- D选项:整理正向样本的同时输入丰富的负向样本,可以使数据更加全面和平衡,有助于模型更好地学习和泛化,从而提高数据质量,该选项正确。
答案:AD。
例如,在一个图像分类任务中,如果猫和狗的类别边界清晰,模型就能更好地学习和区分它们;同时,提供大量猫和狗的图片(正向样本)以及其他动物或非动物的图片(负向样本),能让模型更准确地识别猫和狗,得到质量更高的数据。而如果把猫的不同品种(如波斯猫是猫的子项)混在一起且数据量差异大,会影响数据质量和模型效果。
解析:
无噪音数据通常是指清晰、明确、没有干扰信息的数据。选项B“好了哦”、C“去火车站怎么走”、D“今天天气怎么样”都是比较清晰、明确的语句,没有其他干扰性的背景噪音或无关信息,都可以算是没有噪音的数据。而选项A由于内容缺失,无法判断其是否为无噪音数据。而选项 B “好了哦” 相对比较简单和模糊,完整性和明确性稍弱一些。
答案:CD。
例如,在语音识别等场景中,像“去火车站怎么走”这样的语音指令,没有其他嘈杂的背景声音或模糊不清的表述,就属于无噪音的数据,有利于系统准确地进行处理和分析。