霍夫变化检测介绍

近日遇到一个需求,要从点云数据中提取空间平面。看了看计算机图形学中关于直线检测的霍夫变换的原理,自己写了一个用于三维空间点中进行平面检测的霍夫变换算法。

先说从最简单的,xy平面图像中,提取直线的霍夫变换开始。

假如xy平面上存在一条直线,用方程y=kx+b来表示。那么在kb平面上就可以用一个点(k,b)来对应xy平面上的这条直线。这个变换可以反过来,已知xy平面上有一个点(x0,y0),所有过该点的直线都肯定满足:y0=k·x0+b。改写一下就是:b= x0·k + y0,在kb平面上是一条直线。

假如xy平面上存在一系列的点P1,P2,...构成一条直线,那么对每一个点都进行霍夫变换,最终会在kb平面上得到一个直线族,直线族相交于一点(k0,b0),就是所要寻找的直线y=k0·x+b0。

上述算法原理上可行,但是实际中有两个严重问题:1 平行与y轴的直线斜率k不存在;2 k、b的取值范围都是(-∞,+∞),编程中不可能接受这么大的平面。

因此直线检测的霍夫变换用的是法线式直线方程:p=x·cosθ+y·sinθ。θ是法线角度,p是直线到原点距离。很明显的,θ∈(0,π), p∈(-Max(|P1,P2,...|),Max(|P1,P2,...|)),在给定一堆点坐标的前提下,这两个参数都是有界的。

最终,为了检测出直角坐标X-Y中由点所构成的直线,将p-θ平面分割为许多小格。根据直角坐标中每个点的坐标(x,y),在θ∈ (0,π)范围内内以小格的步长计算各个p值,所得值落在某个小格内,便使该小格的累加记数器加1。当直角坐标中全部的点都变换后,对小格进行检验,计数值最大的小格,其(θ,p)值对应于直角坐标中所求直线。


理解直线检测的原理之后,就可以推广到三维空间平面检测。关键在于寻找合适的平面方程形式,让方程参数取值范围有明确的边界。参考法线式直线方程,这里我选择用点法式平面方程:xsinθcosφ+ysinθsinφ+zcosθ=r。其中r为原点到平面距离,θ为平面法向量天顶角,φ为平面法向量方位角,上述概念不清楚的话可以去参考球坐标系。

对于给定的一系列XYZ空间点(P1,P2,...),很明显,θ∈(0,π),φ∈(-π,+π),r∈(0,Max(|P1,P2,...|)),我们可以确定一个有界三维霍夫空间(θ,φ,r),把该空间细分为许多小格子。对于每一个空间点坐标(x0,y0,z0),按照θ∈(0,π),φ∈(-π,+π)的取值范围去遍历计算r = x0·sinθcosφ+y0·sinθsinφ+z0·cosθ,所得值落在某个小格内,便使该小格的累加记数器加1。完成全部霍夫变换后,取计数值最大的小格,对应的(θ,φ,r)值就可以得到XYZ空间内的平面。

OpenCV中的霍夫变换可以用来检测直线和圆。下面分别介绍一下如何使用霍夫变换检测直线和圆。 1. 检测直线 首先,需要将图像转换为灰度图像,并进行边缘检测。然后,使用cv2.HoughLines函数进行霍夫变换检测直线,该函数的参数包括输入图像、霍夫变换类型、直线的距离和角度分辨率、阈等。具体代码如下: ``` import cv2 import numpy as np # 读取图像并转换为灰度图像 img = cv2.imread('test.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 边缘检测 edges = cv2.Canny(gray, 50, 150, apertureSize=3) # 霍夫变换检测直线 lines = cv2.HoughLines(edges, 1, np.pi/180, 200) # 绘制直线 for line in lines: rho, theta = line[0] a = np.cos(theta) b = np.sin(theta) x0 = a*rho y0 = b*rho x1 = int(x0 + 1000*(-b)) y1 = int(y0 + 1000*a) x2 = int(x0 - 1000*(-b)) y2 = int(y0 - 1000*a) cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2) # 显示图像 cv2.imshow('image', img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 2. 检测圆 同样地,需要将图像转换为灰度图像,并进行边缘检测。然后,使用cv2.HoughCircles函数进行霍夫变换检测圆,该函数的参数包括输入图像、霍夫变换类型、圆心和半径的最小和最大等。具体代码如下: ``` import cv2 import numpy as np # 读取图像并转换为灰度图像 img = cv2.imread('test.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 边缘检测 edges = cv2.Canny(gray, 50, 150, apertureSize=3) # 霍夫变换检测圆 circles = cv2.HoughCircles(edges, cv2.HOUGH_GRADIENT, 1, 20, param1=50, param2=30, minRadius=0, maxRadius=0) # 绘制圆 if circles is not None: circles = np.round(circles[0, :]).astype("int") for (x, y, r) in circles: cv2.circle(img, (x, y), r, (0, 255, 0), 2) # 显示图像 cv2.imshow('image', img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 以上就是使用霍夫变换检测直线和圆的方法,希望能对你有所帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值