3D Hough变换点云平面检测算法

本文的主要目标:1.介绍3D Hough Transform的应用场景,算法思路,算法步骤以及代码。2.对其应用场景进行更进一步分析,与相似用途的算法(RandSAC)进行比较,分析优缺点。

1.适用场景分析:

拟合问题也可以看成是在参数空间内进行的搜索。在我们遇到拟合问题时,我们需要解答的问题通常是以下几个方面中的一个:

已知点集合属于某一个平面(模型),这个模型的参数是多少?
点集中可能存在0到多个平面(模型),找到具体有多少模型实例?
找到点集中的哪些点对应哪些平面(模型)?
针对每一个问题,考虑到噪音的分布、计算的代价,一般都能找到比较适合的解决方法。Hough Tranform(下文称HT)方法,可以用于解决(但不一定是最适用)全部以上问题。在后面的具体分析中,我们会知道那种场景适合用哪种方法解决。

2.算法思路:

2.1“投票”算法

已知点集{p1,…,pn} 中存在平面以及一定数量的噪音,求解最好平面的参数m。拟合问题的解决思路可以用“投票(voting)”来概括:由点 pi向其符合的模型mx投票,得票者最多的模型胜出成为“最好平面”。从理论上来说,这种方法非常通用,不过,n个点的pi与数量不确定的模型之间的组合引发了可穷举性的问题,怎样确定模型的数量?HT解决的就是这个问题。

2.2法向量的转换

平面的方程:Ax+By+Cz+D=0,其中在这里插入图片描述
为平面的法向量。D为原点(0,0,0)到平面的距离(有符号)。我们可以将法向量v⃗ 带入球极坐标系考虑。

在这里插入图片描述

在极坐标系下
在这里插入图片描述

因为 θ∈[0,2π],ϕ∈[0,2π],所以我们可以通过离散θ,ϕ以及原点到平面的距离ρ来实现对参数空间的离散化枚举。

2.3累加器

直线方程为 : (cosϕsinθ)x+(sinϕsinθ)y+cosθ+ρ=0,对于点pi,其针对所有的 (θ,ϕ)带入方程均可求得对应的ρ,因此每个点pi都可在参数空间形成了对应参数曲面如下图所示:

在这里插入图片描述

多个点对应的参数曲面会形成多个交点,其中交点最多的参数(θ,ϕ,ρ)即对应的点数最多的平面。如下图所示:

在这里插入图片描述

从实现的角度考虑,我们可以构建一个三维的数组,第三维保存符合平面的点的个数,称为累加器。针对每个点pi,均对其对应的(θ,ϕ,ρ)进行累加。

2.4需要考虑的问题:

以二维HT线检测为例,出于噪声的影响,我们认为的同一条线可能在HT空间上划分为多个(θ,ϕ,ρ) 因而引发其在累加器上的峰值变的模糊(fuzzy),如下图所示。

在这里插入图片描述
在这里插入图片描述

解决方案是在进行累加值峰值统计时,并不统计每个基本单元的点个数而得到最大值,而是对每个单元的一个邻域进行合并统计,可以帮助解决噪音导致的峰值分散的问题。

第二个问题是,我们认为平面法向量v(x,y,z)与(−x,−y,−z)是等同的,所以在θ,ϕ角度的值域上,我们仅选取半球θ∈[0,π],ϕ∈[0,π]即可。这样也缩小了计算量。同时,因为法向量的这种对称性,在统计累加器个数时,我们也要认为θ=0与θ=π是毗连的,对ϕ亦然。

3.针对具体应用的改进:

在特定的应用中,我们可能对平面的某些特征进行了更进一步的确定。比如说交通标牌,其法向量通常朝向行车方向,结合HT空间(θ,ϕ)的具体含义,我们可以缩小上述参数的值域范围,因此不但可以排除无关平面的“乱入”,而且极大的加速了算法的效率,减小了不小的一笔计算量。

4.分析以及与类似算法进行对比:

HT算法的优点:

所有点都是独立处理的,因此不受离群点的影响。
对噪音有一定的鲁棒性(鲁棒性较其他算法好)
能够进行多个参数实例(比如说多个不同平面)的识别,是HT的独门绝技。
HT的缺点:

计算量极大,计算复杂程度是参数个数的指数倍。
非目标要素会造成伪峰值(这一条在应用得到点云平面检测时并未发现)
参数离散化的步长比较不好选。
同为“投票”算法并且广泛使用的还有RandSAC算法。在拟合算法中,基本的算法还有最小二乘拟合方法。对这三种方法的适用场景、计算量、噪音影响等进行评估,可以得到下表:

在这里插入图片描述

5.参考文献:

1.The 3D Hough Transform for Plane Detection in Point Clouds:A Review and a new Accumulator Design
2.Feifei Li: Finding lines: from detection to model fittinig
3.Fitting: the Hough Transform
4.Least Squares. RandSAC.Hough Transform
6.实现代码:

按照参考文献1中的进行实现,文献1中的方位角为θ,俯仰角为ϕ,与本文以及通行的称呼正好相反,请读者在参考时注意区别。

#define  PI 3.141592653
void HoughTransform(const std::vector<Point>& input, double& A, double& B, double& C, double& D)
{
	int n = input.size();
	if (n < 3)
		return;

	double theta_start=0, theta_end=PI;
	double phi_start=0, phi_end=PI;
	//double phi_start = 0.25*PI, phi_end = 0.75*PI;
	double anglestep=PI/90, disstep=0.1;

	boundingbox box;
	calcboundbox(input, box);
	double d_start = -box.diag() / 2.0, d_end = box.diag() / 2.0;

	int thetas = ceil((theta_end - theta_start) / anglestep);
	int phis = ceil((phi_end - phi_start) / anglestep);
	int dises = ceil( box.diag()/disstep);

	int*** cube = new int**[thetas];
	for (int i = 0; i < thetas;++i)
	{
		cube[i] = new int*[phis];
		for (int j = 0; j < phis; ++j)
		{
			cube[i][j] = new int[dises];
			memset(cube[i][j], 0, sizeof(int)*dises);
		}
	}

	//cos(theta)sin(phi)X+sin(theta)sin(phi)Y+cos(phi)Z = D
	Point ptCenter = box.center();
	for (int i = 0; i < n;++i)
	{
		const Point& ptOrigin = input[i];
		Point point = ptOrigin - ptCenter;

		double theta = theta_start;
		for(int j = 0; j < thetas; ++j)
		{
			int** row = cube[j];
			double phi = phi_start;
			for (int k = 0; k < phis; ++k)
			{
				int* col = row[k];

				double sinphi = sin(phi);
				double d = cos(theta)*sinphi*point.x + sin(theta)*sinphi*point.y + cos(phi)*point.z;

				int d_index = floor((d - d_start) / disstep);
				++(col[d_index]);

				phi += anglestep;
				if (phi > phi_end)
					break;
			}
			theta += anglestep;
			if (theta > theta_end)
				break;
		}
	}//all points

	int buf = 1;
	int maxcount = 0;
	int xmax, ymax, zmax;

	for (int i = 0; i < thetas;++i)
		for (int j = 0; j < phis; ++j)
				for (int k = buf; k < dises - buf;++k)
			{
				int count = 0;
				for (int x = i - buf; x <= i + buf; ++x)
					for (int y = j - buf; y <= j + buf; ++y)
						for (int z = k - buf; z <= k + buf; ++z)
						{
							count += cube[x<0?x+thetas:x%thetas][y<0?y+phis:y%phis][z];
						}
							
				if (count > maxcount)
				{
					xmax = i;
					ymax = j;
					zmax = k;
					maxcount = count;
				}
			}
		
	double theta = theta_start + xmax*anglestep;
	double phi = phi_start + ymax*anglestep;
	double d = d_start + zmax*disstep;

	A = cos(theta)*sin(phi);
	B = sin(theta)*sin(phi);
	C = cos(phi);
	D = -d - (A*ptCenter.x + B*ptCenter.y+C*ptCenter.z);
	//std::cout << A << " , " << B << " , " << C << " , "<< D << std::endl;
	//释放cube
	for (int i = 0; i < thetas; ++i)
	{
		int** row = cube[i];
		for (int j = 0; j < phis;++j)
		{
			int* col = row[j];
			delete[] col;
		}
		delete[] row;
	}
	delete[] cube;
}

依赖的 Point 以及 BoundingBox 的实现如下:

class Point
{
public: 
	double x, y, z;
	Point(double ix,double iy,double iz) :
		x(ix), y(iy), z(iz){}

	Point operator-(const Point& pt) const
	{
		return Point(x - pt.x, y - pt.y, z - pt.z);
	}
};
typedef Point Vector;

class boundingbox
{
public:
	double x_min, x_max;
	double y_min, y_max;
	double z_min, z_max;

public:
	double diag() const
	{
		double dx = x_max - x_min;
		double dy = y_max - y_min;
		double dz = z_max - z_min;

		return sqrt(dx*dx + dy*dy + dz*dz);
	}

	boundingbox():
		x_min(std::numeric_limits<double>::max()),
		y_min(std::numeric_limits<double>::max()),
		z_min(std::numeric_limits<double>::max()),
		x_max(-std::numeric_limits<double>::max()),
		y_max(-std::numeric_limits<double>::max()),
		z_max(-std::numeric_limits<double>::max())
	{}

	Point center() const
	{
		return Point((x_max + x_min) / 2.0,(y_min+y_max) / 2.0, (z_min+z_max) / 2.0);
	}
};

void calcboundbox(const std::vector<Point>& input, boundingbox& box)
{
	for (int i = 0, n = input.size(); i < n;++i)
	{
		auto point = input[i];
		if (point.x < box.x_min)
			box.x_min = point.x;
		if (point.y < box.y_min)
			box.y_min = point.y;
		if (point.z < box.z_min)
			box.z_min = point.z;
		if (point.x > box.x_max)
			box.x_max = point.x;
		if (point.y > box.y_max)
			box.y_max = point.y;
		if (point.z > box.z_max)
			box.z_max = point.z;
	}
}

参考原文:http://www.whudj.cn/?p=877

  • 3
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值