基于深度学习的中文车牌识别与管理系统(含UI界面,Python代码)

本文详述了一款基于深度学习的中文车牌识别与管理系统,包括Python实现代码和PyQt UI界面设计。系统支持图片、视频和摄像头的实时车牌检测识别,具备历史记录查看功能。通过级联分类器和深度学习目标检测算法如YOLO实现车牌定位,使用HyperLPR框架进行字符识别。此外,提供了完整的代码资源和使用教程,适用于初学者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摄像头车牌识别

摘要:本文详细介绍基于深度学习的中文车牌识别与管理系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面。在界面中既可以选择需要识别的车牌视频、图片文件、批量图片进行检测识别,也可以通过电脑自带的摄像头进行实时检测、识别、管理车牌,通过车牌记录查看历史识别的车牌。博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。本博文目录如下:

➷点击跳转至文末所有涉及的完整代码文件下载页☇

代码介绍及演示视频链接:https://www.bilibili.com/video/BV1tT4y1S7QV/(正在更新中,欢迎关注博主B站视频)

2024最新升级2.0版本博客基于YOLOv8v7v6v5和LPRNet的中文车牌识别系统(深度学习代码+UI界面实现+训练数据集)

在这里插入图片描述


前言

        车牌识别其实是个经典的机器视觉任务了,通过图像处理技术检测、定位、识别车牌上的字符,实现计算机对车牌的智能管理功能。如今在小区停车场、高速公路出入口、监控场所、自动收费站等地都有车牌识别系统的存在,车牌识别的研究也已逐步成熟。尽管该技术随处可见了,但其实在精度和识别速度上还需要进一步提升,自己动手实现一个车牌识别系统有利于学习和理解图像处理的先进技术。

        车牌识别的算法经过了多次版本迭代,检测的效率和准确率有所提升,从最初的基于LBP和Haar特征的车牌检测,到后来逐步采用深度学习的方式如SSD、YOLO等算法。车牌的识别部分也由字符匹配到深度神经网络,通过不断验证和测试,其检测和识别效果和适用性都更加突出,支持的模型也更为丰富。

        网上的车牌识别程序代码很多,大部分都是采用深度学习的目标检测算法等识别单张图片中的车牌,但几乎没有人将其开发成一个可以展示的完整软件,即使有的也是比较简单的界面。对此这里给出博主设计的界面,不算精美但比较简约风,功能也可以满足单张图片、批量图片、视频和摄像头的识别检测了,初始界面如下图:

在这里插入图片描述
        检测车牌时的界面截图(点击图片可放大)如下图,也可开启摄像头或视频检测:

车牌展示
         详细的功能演示效果参见博主的B站视频或下一节的动图演示,觉得不错的朋友敬请点赞、关注加收藏!系统UI界面的设计工作量较大,界面美化更需仔细雕琢,大家有任何建议或意见和可在下方评论交流。


1. 效果演示

        首先还是用动图先展示一下效果,系统主要实现的功能是对图片、视频和摄像头画面中的车牌进行检测和识别,识别的结果可视化显示在界面和图像中,另外提供车牌识别历史记录和回看功能,演示效果如下。

(一)选择单张 / 批量车牌识别

        首先还是用动图先展示一下效果。进入软件界面后,点击图片选择按钮选择一张图片,点击“开始运行”即可自动识别车牌并显示结果在界面上;点击历史识别记录的表格序号可回看识别记录。本功能的界面展示如下图所示:

图片选择
        同样的如果需要识别批量图片,可以选择一个包含多张图片文件的文件夹,选择好后点击“开始运行”则逐个对每个文件进行检测和识别,结果与单张图片时类似,可通过表格记录回看识别结果:

在这里插入图片描述

(二)车牌视频识别效果展示

        很多时候我们需要识别一段视频中的车牌,这里设计了视频选择功能。点击视频按钮可选择待检测的视频,系统会自动解析视频逐帧识别车牌,并将结果记录在右下角表格中,效果如下图所示:

车牌视频识别演示
(三)摄像头检测效果展示

        在真实场景中,我们往往利用设备摄像头获取实时画面,同时需要对画面中的车牌进行识别,因此本文考虑此功能。如下图所示,点击摄像头按钮后系统进入准备状态,再点击“开始运行”后,系统显示实时画面并开始检测画面中的车牌,识别结果展示并记录:

摄像头车牌识别


2. 车牌检测与识别

        目前,智能交通系统中集成运用计算机视觉、物联网、人工智能等多种技术成为未来发展方向。其中,车牌识别(License Plate Recognition, LPR)技术作为一项重要技术,从获取的图像中提取目标车辆的车牌信息,成为完善智能交通管理运行的基础。

        由于本文介绍的是中文车牌,所以可以简单了解一下国内汽车拍照的特点:字符数为七个,包括汉字、字母和数字。车牌颜色组合中,其中最常见的组合为普通小型汽车蓝底白字和新能源汽车的渐变绿底黑字1

在这里插入图片描述
        由于本文介绍的是中文车牌,所以可以简单了解一下国内汽车拍照的特点:字符数为七个,包括汉字、字母和数字,车牌轮廓长宽比例基本固定。车牌颜色组合中,其中最常见的组合为普通小型汽车蓝底白字和新能源汽车的渐变绿底黑字。总结来说,车牌是一个有特点的图像区域,几种特征可以综合起来确定车牌定位,所以之前就有利用车牌与周围环境的差异的算法。目前常见的车牌定位算法有以下 4 种:基于颜色、纹理、边缘信息的车牌定位算法和基于人工神经网络的车牌定位算法2

        为了方便演示,博主绘制了一张车牌识别的流程图,如下图所示,常规的步骤包括图像采集、预处理、车牌定位、字符分割、字符识别、输出结果。深度学习技术成熟之后,端到端的网络模型使得这一过程变得简单起来。从思想上来说,基于深度学习的车牌识别实现思路主要包括两个部分:(1)车牌检测定位;(2)车牌字符识别。

在这里插入图片描述
        其中,车牌的检测定位本质是一个特定的目标检测(Object Detection)任务,即通过算法框选出属于车牌的位置坐标,以便将其与背景区分开来。可以认为检测出的车牌位置才是我们的感兴趣区域(Region Of Interest, ROI)。好用的方法如Cascade LBP,它是一种机器学习的方法,可以利用OPenCV训练级联分类器,依赖CPU进行计算,参考网址:https://gitee.com/zeusees/HyperLPR。级联分类器的方法对于常用场景效果比较好,检测速度较快,曾经一度比较流行,但准确率一般。基于深度学习的检测算法有Mobilene-SSD、YOLO-v5等,利用大批量的标注数据进行训练,训练代码可以参考开源代码https://github.com/zeusees/License-Plate-Detector

        当ROI被检测出来,如何对这一区域中的字符进行识别,这就涉及到采取的处理方式。第一种处理方式,首先利用一系列字符分割的算法将车牌中的字符逐个分开,然后基于深度学习进行字符分类,得到识别结果,可参考的代码地址:https://github.com/LCorleone/A-Simple-Chinese-License-Plate-Generator-and-Recognition-Framework;第二种,区别于第一种先分割再分类的两步走方式,利用端到端的CTC( Connectionist Temporal Classification)网络直接进行识别,代码地址:https://github.com/armaab/hyperlpr-train

        这里我们使用网上开源的HyperLPR中文车牌识别框架,首先导入OpenCV和hyperlpr,读取一张车牌图片调用架构中的车牌识别方法获得结果,以下代码来自官方的示例:

#导入包
from hyperlpr import *
#导入OpenCVimport cv2
#读入图片
image = cv2.imread("demo.jpg")
#识别结果
print(HyperLPR_plate_recognition(image))

        以上代码运行结果如下,可以看出该方法识别了车牌的车牌字符、置信度值、车牌位置坐标、图片尺寸等结果。

运行结果
        这样的结果还不够直观,我们写一个函数将车牌的识别结果标注在图片上,首先导入相关依赖包,其代码如下:

# 导入包
from hyperlpr import *
# 导入OpenCVimport cv2 as cv
from PIL import Image, ImageDraw, ImageFont
import numpy as np

        新建一个函数drawRectBox,将图像数据、识别结果、字体等参数传入,函数内部利用OpenCV和PIL库添加标注框和识别结果的字符,其代码如下:

def drawRectBox(image, rect, addText, fontC):
    cv.rectangle(image, (int(round(rect[0])), int(round(rect[1]))),
                 (int(round(rect[2]) + 8), int(round(rect[3]) + 8)),
                 (0, 0, 255), 2)
    cv.rectangle(image, (int(rect[0] - 1), int(rect[1]) - 16), (int(rect[0] + 75), int(rect[1])), (0, 0, 255), -1, cv.LINE_AA)
    img = Image.fromarray(image)
    draw = ImageDraw.Draw(img)
    draw.text((int(rect[0] + 1), int(rect[1] - 16)), addText, (255, 255, 255), font=fontC)
    imagex = np.array(img)
    return imagex

        我们首先读取图片文件,利用前面的HyperLPR_plate_recognition方法识别出车牌结果,调用以上函数获得带标注框的图片,利用OpenCV的imshow方法显示结果图片,其代码如下:

image = cv.imread('test3.jpeg')  # 读取选择的图片
res_all = HyperLPR_plate_recognition(image)
fontC = ImageFont.truetype("./platech.ttf", 14, 0)
res, confi, axes = res_all[0]
image = drawRectBox(image, axes, res, fontC)
cv.imshow('Stream', image)
c = cv.waitKey(0) & 0xff

        此时运行以上代码可以得到如下结果:

在这里插入图片描述
        同理,识别视频中的车牌也可以做类似的操作,不过我们需要先对视频文件进行逐帧读取,然后采用以上的方式在图片中标识出车牌并显示。这部分代码如下:

capture = cv.VideoCapture("./车牌检测.mp4")  # 读取视频文件
fontC = ImageFont.truetype("./platech.ttf", 14, 0)  # 字体,用于标注图片

i = 1
while (True):
    ref, frame = capture.read()
    if ref:
        i = i + 1
        if i % 5 == 0:
            i = 0
            res_all = HyperLPR_plate_recognition(frame)  # 识别车牌
            if len(res_all) > 0:
                res, confi, axes = res_all[0]  # 获取结果
                frame = drawRectBox(frame, axes, res, fontC)
            cv.imshow("num", frame)  # 显示画面

        if cv.waitKey(1) & 0xFF == ord('q'):
            break  # 退出
    else:
        break

        以上代码每5帧识别一次视频中的车牌,将车牌的结果标注在画面中进行实时显示,运行结果的截图如下所示:

在这里插入图片描述
        车牌的识别部分代码演示完毕,对此我们完成了图片和视频的识别,然而这些还是简单的脚本呈现。为了方便更换图片、视频以及管理车牌,还需要设计文件选择功能以及系统的UI界面。打开QtDesigner软件,拖动以下控件至主窗口中,车牌识别系统的界面设计如下图所示:

在这里插入图片描述

        控件界面部分设计好,接下来利用PyUIC工具将.ui文件转化为.py代码文件,通过调用界面部分的代码同时加入对应的逻辑处理代码。博主对其中的UI功能进行了详细测试,最终开发出一版流畅得到清新界面,就是博文演示部分的展示,完整的UI界面、测试图片视频、代码文件,以及Python离线依赖包(方便安装运行,也可自行配置环境),均已打包上传,感兴趣的朋友可以通过下载链接获取。


下载链接

    若您想获得博文中涉及的实现完整全部程序文件(包括测试图片、视频,py, UI文件等,如下图),这里已打包上传至博主的面包多平台,见可参考博客及视频,已将所有涉及的文件同时打包到里面,点击即可运行,完整文件截图如下:

在这里插入图片描述

    在文件夹下的资源显示如下,其中包含了Python的离线依赖包,读者可在正确安装Anaconda和Pycharm软件后,点击bat文件进行安装,详细演示也可见本人B站视频。

在这里插入图片描述

注意:本资源已经过调试通过,下载后可通过Pycharm运行;运行界面的主程序为runMain.py,测试识别图片脚本可运行testPic.py,视频测试脚本可运行testVideo.py文件,为确保程序顺利运行,请配置Python依赖包的版本如下:➷➷➷
(Python版本:3.7)
hyperlpr 0.0.2
Keras 2.2.4
tensorflow 1.13.1
numpy 1.21.5
Pillow 9.0.1
PyQt5 5.15.4
pyqt5-tools 5.15.4.3.2
opencv-python 3.4.9.31

参考文章基于深度学习的中文车牌识别与管理系统

参考视频https://www.bilibili.com/video/BV1tT4y1S7QV/


结束语

        由于博主能力有限,博文中提及的方法即使经过试验,也难免会有疏漏之处。希望您能热心指出其中的错误,以便下次修改时能以一个更完美更严谨的样子,呈现在大家面前。同时如果有更好的实现方法也请您不吝赐教。


  1. 中华人民共和国公安部.GA36-2014. 中华人民共和国公共安全行业标准–中华人民共和国机动车号牌[S]. 北京:群众出版社, 2014, 2-4 ↩︎

  2. Du S, Ibrahim M, Shehata M, et al. Automatic license plate recognition (ALPR): A state-of-the-art review[J]. IEEE Transactions on circuits and systems for video technology, 2012, 23(2): 311-325. ↩︎

目标识别是计算机视觉一个重要的研究领域,由此延伸出的车辆型号识别具有重 要的实际应用价值,特别是在当今交通状况复杂的大城市,智能交通系统成为发展趋 势,这离不开对车辆型号进行识别和分类的工作,本文围绕如何利用计算机视觉的方 法进行车辆型号的识别和分类展开了一系列研究: 本文对当前的目标识别和分类的特征和算法做了总结和归纳。分析比较了作为图 像特征描述常见的特征算子,总结归纳了他们的提取方法、特征性能以及相互之间的 关联。另外,介绍了在目标识别工作中常用的分类方法,阐述了他们各自的原理和工作 方法。研究了深度神经网络的理论依据,分析比较了深度神经网络不同的特征学习方 法,以及卷积神经网络的训练方法。分析比较不同特征学习方法的特点选取 k-means 作为本文使用的特征学习方法,利用卷积神经网络结构搭建深度学习模型,进行车辆 车型识别工作。 本文为了测试基于深度学习的车辆型号分类算法的性能在 30 个不同型号共 7158 张图片上进行实验;并在相同数据上利用改进了的 SIFT 特征匹配的算法进行对比实验; 进过实验测试,深度学习方法在进行车型分类的实验中取得 94%的正确率,并在 SIFT 匹配实验结果对比后进一步证实:深度学习的方法能够应用在车辆型号识别领域
<think>嗯,用户想了解基于深度学习车牌识别技术及其实现思路。首先,我需要回忆一下这方面的知识。深度学习车牌识别中的应用通常分为几个步骤,比如车牌检测、字符分割和字符识别。 首先,用户提到的OpenCV的车牌识别,但那是基于传统特征的方法,比如边缘检测和形态学处理,但现在更多的是用深度学习。比如,YOLO或Faster R-CNN可能用于车牌的检测阶段。然后是字符分割,可能需要用U-Net这样的分割网络,或者通过投影分析。最后是字符识别,常见的是用CNN或CRNN结合CTC损失函数来处理不定长的序列。 不过用户提供的引用中,引用[1]提到了OpenCV的两种方法,包括深度学习,但具体可能没有详细展开。引用[3]讲到了卷积神经网络和目标检测的基础,这可能和车牌检测相关。所以需要结合这些内容来组织回答。 用户可能想知道整个流程,从检测到识别,每个步骤的深度学习模型选择。比如,检测阶段用YOLOv5,分割用U-Net,识别用CRNN+CTC。同时,实现思路需要包括数据预处理、模型训练、后处理等步骤。 还要注意用户提到的实现方法,可能需要给出一个简单的代码示例,比如用PyTorch构建一个简单的CNN模型,或者展示如何调用预训练的模型进行检测。不过代码示例需要正确,并且符合用户的问题需求。 另外,用户可能对数据增强、模型优化、端到端系统感兴趣,所以相关问题可以包括这些方面。比如如何提升精度,如何处理复杂背景,端到端的方法有哪些等等。 需要确保回答结构清晰,分步骤说明,并引用提供的参考资料。比如在车牌检测部分,可以提到基于深度学习的检测方法如Faster R-CNN,引用[3]中的目标检测理论。字符识别部分可以提到引用[1]中的基于深度学习的方法,如CRNN。 最后,生成的相关问题需要围绕技术细节、优化、应用场景等,帮助用户进一步探索。比如,如何解决车牌倾斜的问题,或者数据增强的具体方法有哪些。</think>### 基于深度学习车牌识别技术及实现思路 #### 1. **技术流程概述** 基于深度学习车牌识别通常分为以下步骤: **车牌检测 → 车牌校正 → 字符分割 → 字符识别** 相比传统方法(如边缘检测、形态学操作[^2]),深度学习通过端到端的特征提取显著提升了复杂场景下的鲁棒性。 --- #### 2. **关键技术实现思路** ##### **2.1 车牌检测** - **目标**:从图像中定位车牌区域。 - **常用模型**: - **YOLO系列**(YOLOv5/YOLOv8):轻量高效,适合实时检测。 - **Faster R-CNN**:精度高但计算量较大。 - **数据增强**:添加噪声、旋转、模糊等模拟复杂光照和遮挡场景。 - **示例代码(PyTorch-YOLOv5检测)**: ```python import torch model = torch.hub.load('ultralytics/yolov5', 'yolov5s') results = model(img) results.show() # 显示检测框 ``` ##### **2.2 车牌校正** - **问题**:车牌可能存在倾斜或透视变形。 - **方法**: - 通过仿射变换或关键点检测(如UNet预测角点)进行几何校正。 - 使用霍夫变换检测倾斜角度后旋转图像。 ##### **2.3 字符分割** - **传统方法**:垂直投影法、连通域分析。 - **深度学习方法**: - **语义分割模型**(如UNet):直接分割每个字符区域。 - **端到端处理**:结合检测分割,减少误差传递。 ##### **2.4 字符识别** - **模型选择**: - **CRNN(CNN+RNN+CTC)**:处理不定长字符序列,适合车牌字符识别。 - **Transformer-based模型**:利用自注意力机制提升长序列建模能力。 - **损失函数**:CTC Loss或交叉熵损失。 - **示例网络结构(简化版CRNN)**: ```python import torch.nn as nn class CRNN(nn.Module): def __init__(self): super().__init__() self.cnn = nn.Sequential( nn.Conv2d(3, 64, 3), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(64, 128, 3), nn.ReLU(), nn.MaxPool2d(2)) self.rnn = nn.LSTM(128*7, 256, bidirectional=True) self.fc = nn.Linear(512, 68) # 输出字符类别数 ``` --- #### 3. **实现优化关键点** 1. **数据集构建**: - 使用公开数据集(如CCPD、AOLP)或合成数据(添加噪声、仿射变换)。 - 标注工具:LabelImg(检测)、Labelme(分割)。 2. **模型轻量化**: - 知识蒸馏(大模型指导小模型)或通道剪枝。 3. **端到端方案**: - 直接使用端到端模型(如LPRNet),跳过字符分割步骤[^3]。 --- #### 4. **典型应用场景** - **交通监控**:实时识别违规车辆。 - **停车场管理**:自动记录车牌信息。 - **电子收费系统(ETC)**:结合RFID实现快速通行。 ---
评论 34
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

思绪无限

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值