1. 引言
随着智能交通系统的发展,车牌识别技术(LPR,License Plate Recognition)在停车管理、收费站、城市监控等领域得到了广泛应用。车牌识别不仅能帮助自动化收费,还能增强交通管理效率和道路安全性。本博客将介绍如何基于YOLOv5深度学习模型构建一个车牌识别收费系统,并开发一个简洁的UI界面进行实时车牌检测和识别。
本文将详细介绍车牌识别系统的构建过程,包括数据集选择、YOLOv5模型训练、系统开发与集成等内容。读者可以根据这些内容建立自己的车牌识别系统,并进一步进行优化。
2. 车牌识别收费系统概述
车牌识别收费系统(LPR)基于计算机视觉和深度学习技术,能够自动从车辆图像中检测和识别车牌号码。该系统通常包括两个主要部分:车牌检测和车牌字符识别。
- 车牌检测:从输入图像中定位车牌的位置,通常使用物体检测算法来进行定位。
- 车牌字符识别:对检测到的车牌区域进行字符分割和识别,最终获得车牌号码。
在传统的车牌识别系统中,通常使用经典的计算机视觉技术(如Haar级联分类器、HOG特征)来进行车牌检测。然而,随着深度学习的快速发展,基于卷积神经网络(CNN&#x