解决ultralytics的YOLO模型训练中验证集Loss为NaN(或mAP为0)的问题

前言

在使用ultralytics库的YOLO模型时,比如YOLOv8进行目标检测模型训练,遇到一个非常奇怪的问题:训练过程中的验证损失(loss)出现了NaN,而验证的评价指标如mAP50却能正常计算(有时mAP都也为0)。经过排查发现,这个问题和我的显卡(1660 Super)有关。本文记录了找到问题原因并解决的过程,供遇到类似问题的读者参考。

训练时在控制台打印的结果显示,训练集有正常显示loss,到验证时出现指标为0:

在这里插入图片描述
这时如果查看训练结果中的results.csv文件,出现下面的结果记录,显示val上的loss均为nan:

epoch,         train/box_loss,         train/cls_loss,         train/dfl_loss,   metrics/precision(B),      metrics/recall(B),       metrics/mAP50(B),    metrics/mAP50-95(B),           val/box_loss,           val/cls_loss,           val/dfl_loss,                 lr/pg0,                 lr/pg1,                 lr/pg2
    1,                 1.0528,                 4.0179,                 1.0164,                0.50566,                0.42115,                 0.4226,                0.31671,                    nan,                    nan,                    nan,              0.0033291,              0.0033291,              0.0033291
    2,                  0.975,                 2.3274,                0.99149,                0.87422,                0.84204,                 0.9524,                0.73884,                    nan,                    nan,                    nan,              0.0066075,              0.0066075,              0.0066075
    3,                0.99872,                 1.7083,                 1.0006,                0.86385,                0.92221,                0.97791,                0.75714,                    nan,                    nan,                    nan,              0.0098308,              0.0098308,              0.0098308
    4,                0.98629,                 1.4711,                 1.0027,                 0.9398,                0.96121,                0.98227,                0.74803,                    nan,                    nan,                    nan,              0.0097525,              0.0097525,              0.0097525
    5,                0.95163,                 1.1908,                0.98319,                0.93729,                0.97754,                0.98343,                0.77948,                    nan,                    nan,                    nan,                0.00967,                0.00967,                0.00967
    6,                0.91768,                0.97527,                0.96595,                0.94316,                0.98203,                0.98379,                0.78054,                    nan,                    nan,                    nan,              0.0095875,              0.0095875,              0.0095875
    7,                0.89667,                0.83439,                0.95954,                0.96266,                 0.9745,                0.98683,                0.77252,                    nan,                    nan,                    nan,               0.009505,               0.009505,               0.009505
    8,                0.88253,                0.76853,                0.95979,                0.93883,                0.98245,                0.98682,                 0.7814,                    nan,                    nan,                    nan,              0.0094225,              0.0094225,              0.0094225
    9,                0.87479,                0.70413,                0.95082,                  0.943,                0.97676,                0.98672,                0.77541,                    nan,                    nan,                    nan,                0.00934,                0.00934,                0.00934
   10,                 0.8639,                0.67849,                0.95247,                0.96784,                0.97556,                0.98666,                0.78711,                    nan,                    nan,                    nan,              0.0092575,              0.0092575,              0.0092575

如果按照这个情况,等训练结束不出意外会得到下面的损失曲线:

在这里插入图片描述

损失曲线的box_loss、cls_loss、dfl_loss均为空,显然有猫腻!


问题描述

在YOLOv8模型训练的过程中,验证集的损失项出现了NaN值,导致模型训练无法有效进行。NaN(Not a Number)值通常表明某些计算过程出错,可能是数据、配置或硬件兼容性引起的。

NaN值在训练过程中出现通常可能是由以下几个原因引起的:

  1. 数据集问题:验证集数据不完整或格式错误。
  2. 学习率过高:过大的学习率会导致模型参数波动过大,可能引发NaN。
  3. 硬件兼容性问题:某些显卡在训练过程中不完全兼容特定的训练设置或计算模式。

这里我试过排查学习率的问题,从打印的结果看开始时学习率很低,关键我运行在另一台电脑上(RTX4090显卡),同样的代码、环境,没有复现这个问题。结合显卡类型和模型训练的反馈信息,我重点排查了硬件兼容性问题。

解决方案

在查阅资料后,发现16系列显卡,如1660 Super显卡在启用AMP(Automatic Mixed Precision, 自动混合精度)时容易引发NaN问题。混合精度训练会将一部分计算精度降低以加速训练,但可能会在不完全支持的显卡上导致损失计算异常。针对这一情况,以下是具体的解决步骤。

1. 禁用AMP功能

在YOLOv8的配置文件和代码中,将AMP功能关闭,以避免精度导致的计算问题。

(1)修改配置文件
打开YOLOv8的训练代码,在调用YOLO训练时,指定AMP设置,修改为False

    # 加载预训练的YOLOv8模型并开始训练
    model = YOLO(model_path, task='detect')
    results2 = model.train(
        data=data_path,  # 指定训练数据的配置文件路径
        device=device,  # 自动选择进行训练
        workers=workers,  # 指定使用的工作进程数量
        imgsz=imgsz,  # 指定输入图像的大小
        epochs=epochs,  # 指定训练的epoch数
        batch=batch,  # 指定每个批次的大小
        name=train_name,  # 指定训练任务的名称
        amp=False
    )

也就是增加一个参数设置,如下图所示:

在这里插入图片描述

(2)修改验证器代码

打开ultralytics/engine/validator.py文件,注释掉强制使用FP16精度的代码行:

# self.args.half = self.device.type != 'cpu'  # 注释掉以防止验证过程中强制使用FP16

这个代码的位置大概就是下面的样子,跟你的ultralytics这个库的版本有关系,代码可能有些差别:

在这里插入图片描述

2. 验证配置变更

完成上述修改后,重新运行YOLOv8的训练代码,并观察验证集损失是否仍然为NaN。我的训练日志显示,NaN问题已成功解决,验证损失能够正常显示数值。

在这里插入图片描述

这时再看results.png可以发现,它val的loss重新有值了:

在这里插入图片描述

从数值上看,loss也是有值的:

在这里插入图片描述

3. 结果分析

在禁用AMP后,YOLOv8的训练过程变得稳定,验证集损失再未出现NaN的问题。通过分析,我总结出在某些显卡(如GTX 16系列)上,AMP功能可能导致精度计算问题,特别是在YOLOv8这类对计算精度敏感的模型中。关闭AMP后,可以牺牲少量训练速度来获得更稳定的结果。

总结

遇到类似问题的读者可以参考以下调试步骤:

  1. 检查数据集是否完整,排除格式错误。
  2. 调整学习率,以避免梯度爆炸。
  3. 根据硬件配置调整AMP设置,特别是对于GTX 16系列显卡用户,建议禁用AMP。

希望这篇记录能帮助到和我一样使用1660 Super显卡且遇到NaN问题的用户。禁用AMP是一个有效的解决方案,可以提升YOLOv8的训练稳定性,确保模型能正常训练并获得有效结果。

<think>嗯,用户提到的YOLO训练结果都是0nan,这个问题确实比较棘手。首先,我需要回忆一下常见的训练失败原因。通常,出现这种情况可能有几个方面的问题:数据、模型配置、超参数设置训练环境的问题。 首先,检查数据是否正确。用户的数据集是否有标注错误?比如,标签文件中的类别是否正确,边界框坐标是否在合理范围内(0到1之间)。如果标签有问题模型可能无法学习到有效的特征,导致损失值不下降者出现NaN。 接下来,数据加载部分。可能在读取数据时出现了错误,比如图像路径不正确,者数据预处理步骤有误。例如,如果输入图像的尺寸不符合模型要求,者归一化处理不当,都可能导致模型无法收敛。 然后是模型配置。YOLO的不同版本有不同的配置文件,用户是否正确选择了对应的模型结构?比如,类别数是否设置正确。如果类别数不对,最后的分类层输出可能与标签不匹配,导致损失计算错误,出现NaN。 损失函数部分也需要检查。YOLO的损失包括box_loss、cls_loss和dfl_loss。如果某个损失项出现NaN,可能是由于计算过程中出现了除以零者对数负数的情况。比如,分类损失为NaN,可能是因为模型的输出概率出现了极端值,需要检查是否使用了正确的激活函数(如SigmoidSoftmax),以及是否有梯度爆炸的情况。 学习率和优化器设置也是一个常见问题。如果学习率过高,可能会导致梯度更新过大,权重变得不稳定,损失值剧烈波动甚至变为NaN。这时候可以尝试降低学习率,者使用学习率预热策略。 另外,检查训练日志中的警告信息。用户提到有TensorBoard的警告,关于图可视化失败。这可能是因为模型在导出计算图时遇到了不支持的数据结构,但这个问题可能不影响训练本身,但需要确认是否有其他更严重的错误信息被忽略。 还有可能的是硬件问题,比如GPU内存不足导致的数据处理错误,但用户显示GPU内存使用量在4G左右,应该不是内存不足的问题。不过,可以检查是否有显存溢出的情况,者混合精度训练的设置是否正确。 最后,建议用户逐步排查:首先验证数据集的正确性,然后检查模型配置和超参数,接着尝试使用更小的学习率,者在一个很小的子集上进行过拟合测试,看看模型是否能够正常收敛。如果在小数据集上仍然出现问题,那么问题可能出在模型结构数据预处理上;如果能够过拟合,那么可能需要调整数据增强正则化策略。</think>在YOLO模型训练过程中出现损失值全为0NaN以及mAP指标全为0的情况,通常是由以下原因导致的。请按照以下步骤逐步排查: --- ### 一、核心问题分析 从输出日志可见: - `box_loss=0`:目标检测未学习到有效特征 - `cls_loss=nan`:分类预测出现数值不稳定 - `mAP全为0`:模型完全失效 - `dfl_loss=0`:分布焦点损失未生效 --- ### 二、常见原因及解决方案 #### 1. 数据问题(首要排查) - **标签格式错误** - 检查标注文件(YOLO格式要求): ```text <class_id> <x_center> <y_center> <width> <height> ``` - 坐标必须归一化到[0,1] - 类别ID必须从0开始连续编号 - 使用官方验证工具: ```bash from ultralytics.yolo.utils.checks import check_det_dataset check_det_dataset('your_dataset.yaml') ``` #### 2. 配置文件错误 - **类别数不匹配** - 检查`*.yaml`配置文件中`nc`参数是否与实际类别数一致 - 示例配置片段: ```yaml # yolov8.yaml nc: 10 # 必须与数据集实际类别数一致 ``` #### 3. 学习率问题(常见NaN原因) - **学习率过大导致梯度爆炸** - 尝试降低初始学习率(推荐从`1e-4`开始) - 添加梯度裁剪: ```python optimizer = torch.optim.SGD(model.parameters(), lr=0.0001, momentum=0.9) torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10) ``` #### 4. 损失计算问题 - **NaN具体分析**: ```math \text{cls\_loss} = -\sum (y \cdot \log(p) + (1-y) \cdot \log(1-p)) ``` - 出现`log(0)`会导致NaN,需检查: - 模型输出是否经过Sigmoid激活 - 标签中是否存在全0全1的情况 --- ### 三、调试建议 1. **最小化验证**: ```python # 使用单张图片测试过拟合能力 results = model.train(data="coco128.yaml", epochs=300, imgsz=640, batch=1, optimizer="Adam", lr0=0.0001, device=0) ``` - 如果仍无法收敛,说明存在基础配置错误 2. **可视化验证**: ```bash from ultralytics.yolo.utils.plotting import plot_images plot_images(imgs, labels, paths=save_dir/'labels.jpg') ``` 3. **梯度监控**: ```python # 在训练循环中添加 print(f"Max gradient: {max(p.grad.max() for p in model.parameters())}") ``` --- ### 四、典型错误排查表 | 现象 | 优先检查方向 | 工具方法 | |-------------|--------------------|---------------------------| | box_loss=0 | 标注文件 | labelImg可视化检查 | | cls_loss=nan | 激活函数 | 输出直方图可视化 | | mAP=0 | 数据加载 | `check_det_dataset()`函数 | | dfl_loss=0 | 损失权重配置 | hyp*.yaml文件检查 | --- 建议从数据质量开始逐步排查,使用官方验证工具检查数据集完整性。如果问题仍然存在,可提供完整的训练配置文件和数据集样本进行进一步分析。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

思绪无限

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值