解决——ImportError: cannot import name '_validate_lengths'

找到该路径:Anaconda3/lib/python3.6/site-packages/numpy/lib/arraypad.py 。

别管多少行,有的并没有网上说的954行,添加下面两个函数保存,重新加载。

def _normalize_shape(ndarray, shape, cast_to_int=True):
"""
Private function which does some checks and normalizes the possibly
much simpler representations of ‘pad_width‘, ‘stat_length‘,
‘constant_values‘, ‘end_values‘.
Parameters
----------
narray : ndarray
    Input ndarray
shape : {sequence, array_like, float, int}, optional
    The width of padding (pad_width), the number of elements on the
    edge of the narray used for statistics (stat_length), the constant
    value(s) to use when filling padded regions (constant_values), or the
    endpoint target(s) for linear ramps (end_values).
    ((before_1, after_1), ... (before_N, after_N)) unique number of
    elements for each axis where `N` is rank of `narray`.
    ((before, after),) yields same before and after constants for each
    axis.
    (constant,) or val is a shortcut for before = after = constant for
    all axes.
cast_to_int : bool, optional
    Controls if values in ``shape`` will be rounded and cast to int
    before being returned.
Returns
-------
normalized_shape : tuple of tuples
    val                               => ((val, val), (val, val), ...)
    [[val1, val2], [val3, val4], ...] => ((val1, val2), (val3, val4), ...)
    ((val1, val2), (val3, val4), ...) => no change
    [[val1, val2], ]                  => ((val1, val2), (val1, val2), ...)
    ((val1, val2), )                  => ((val1, val2), (val1, val2), ...)
    [[val ,     ], ]                  => ((val, val), (val, val), ...)
    ((val ,     ), )                  => ((val, val), (val, val), ...)
"""
ndims = ndarray.ndim
# Shortcut shape=None
if shape is None:
    return ((None, None), ) * ndims
# Convert any input `info` to a NumPy array
shape_arr = np.asarray(shape)
try:
    shape_arr = np.broadcast_to(shape_arr, (ndims, 2))
except ValueError:
    fmt = "Unable to create correctly shaped tuple from %s"
    raise ValueError(fmt % (shape,))
# Cast if necessary
if cast_to_int is True:
    shape_arr = np.round(shape_arr).astype(int)
# Convert list of lists to tuple of tuples
return tuple(tuple(axis) for axis in shape_arr.tolist())

def _validate_lengths(narray, number_elements):
    """
    Private function which does some checks and reformats pad_width and
    stat_length using _normalize_shape.
    Parameters
    ----------
    narray : ndarray
        Input ndarray
    number_elements : {sequence, int}, optional
        The width of padding (pad_width) or the number of elements on the edge
        of the narray used for statistics (stat_length).
        ((before_1, after_1), ... (before_N, after_N)) unique number of
        elements for each axis.
        ((before, after),) yields same before and after constants for each
        axis.
        (constant,) or int is a shortcut for before = after = constant for all
        axes.
    Returns
    -------
    _validate_lengths : tuple of tuples
        int                               => ((int, int), (int, int), ...)
        [[int1, int2], [int3, int4], ...] => ((int1, int2), (int3, int4), ...)
        ((int1, int2), (int3, int4), ...) => no change
        [[int1, int2], ]                  => ((int1, int2), (int1, int2), ...)
        ((int1, int2), )                  => ((int1, int2), (int1, int2), ...)
        [[int ,     ], ]                  => ((int, int), (int, int), ...)
        ((int ,     ), )                  => ((int, int), (int, int), ...)
    """
    normshp = _normalize_shape(narray, number_elements)
    for i in normshp:
        chk = [1 if x is None else x for x in i]
        chk = [1 if x >= 0 else -1 for x in chk]
        if (chk[0] < 0) or (chk[1] < 0):
            fmt = "%s cannot contain negative values."
            raise ValueError(fmt % (number_elements,))
    return normshp
###############################################################################
# Public functions​
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值