整理
本文整理了一些简单的文本切分方式,适用于大语言模型经典应用RAG或相似场景。
一般切分
如果不借助任何包,很容易想到如下切分方案:
text = "我是一个名为 ChatGLM3-6B 的人工智能助手,是基于清华大学 KEG 实验室和智谱 AI 公司于 2023 年共同训练的语言模型开发的。我的目标是通过回答用户提出的问题来帮助他们解决问题。由于我是一个计算机程序,所以我没有实际的存在,只能通过互联网来与用户交流。"
chunks = []
chunk_size = 128
for i in range(0, len(text), chunk_size):
chunk = text[i:i + chunk_size]
chunks.append(chunk)
chunks
['我是一个名为 ChatGLM3-6B 的人工智能助手,是基于清华大学 KEG 实验室和智谱 AI 公司于 2023 年共同训练的语言模型开发的。我的目标是通过回答用户提出的问题来帮助他们解决问题。由于我是一个计算机程序,所以我没有实际的存在,只能通过互联网',
'来与用户交流。']
字符切分
使用CharacterTextSplitter,一般的设置参数为:chunk_size、 chunk_overlap、separator和strip_whitespace。
from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size = 35, chunk_overlap=0, separator='', strip_whitespace=False)
text_splitter.create_documents([text])