大家好,我是对白。
ACM SIGIR 2022是CCF A类会议,人工智能领域智能信息检索( Information Retrieval,IR)方向最权威的国际会议。会议专注于信息的存储、检索和传播等各个方面,包括研究战略、输出方案和系统评估等等。第45届国际计算机学会信息检索大会(The 45rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2022)计划于今年7月11日-7月15日在西班牙马德里召开。这次会议共收到794篇长文和667篇短文投稿,有161篇长文和165篇短文被录用,录用率约为20%和24.7%。官方发布的接收论文列表:
Accepted Paperssigir.org/sigir2022/program/accepted/
本文选取了SIGIR 2022中170篇长文或短文,重点对推荐系统相关论文(124篇)按不同的任务场景和研究话题进行分类整理,也对其他热门研究方向(问答、对话、知识图谱等,46篇)进行了归类,以供参考。文章也同步发布在AI Box知乎专栏(知乎搜索「 AI Box专栏」),整理过程中难免有疏漏,欢迎大家在知乎专栏的文章下方评论留言,交流探讨!
从词云图看今年SIGIR的研究热点:根据长文和短文的标题绘制如下词云图,可以看到今年研究方向依旧集中在Recommendation,也包括Retrieval、Query等方向;主要任务包括:Ranking、Cross-domain、Multi-Model/Behavior、Few-Shot、User modeling、Conversation等;热门技术包括:Neural Networks、Knowledge Graph、GNN、Contrastive Learning、Transformer等,其中基于Graph的方法依旧是今年的研究热点。
本文目录
1 按照任务场景划分
-
CTR
-
Collaborative Filtering
-
Sequential/Session-based Recommendation
-
Conversational Recommender System
-
POI Recommendation
-
Cross-domain/Multi-behavior Recommendation
-
Knowledge-aware Recommendation
-
News Recommendation
-
Others
2 按照主要技术划分
-
GNN-based
-
RL-based
-
Contrastive Learning based
-
AutoML-based
-
Others
3 按照研究话题划分
-
Bias/Debias in Recommender System
-
Explanation in Recommender System
-
Long-tail/Cold-start in Recommender System
-
Fairness in Recommender System
-
Diversity in Recommender System
-
Attack/Denoise in Recommender System
-
Others
4 其他研究方向
-
QA
-
Knowledge Graph
-
Conversation/ Dialog
-
Summarization
-
Multi-Modality
-
Generation
-
Representation Learning
1.按照任务场景划分
1.1 CTR /CVR Prediction
-
Enhancing CTR Prediction with Context-Aware Feature Representation Learning 【上下文相关的特征表示】
-
HIEN: Hierarchical Intention Embedding Network for Click-Through Rate Prediction 【层次化意图嵌入网络】
-
NAS-CTR: Efficient Neural Architecture Search for Click-Through Rate Prediction 【高效的网络结构搜索】
-
NMO: A Model-Agnostic and Scalable Module for Inductive Collaborative Filtering 【模型无关的归纳式协同过滤模块】
-
Neighbour Interaction based Click-Through Rate Prediction via Graph-masked Transformer 【图遮盖的Transformer】
-
Neural Statistics for Click-Through Rate Prediction 【short paper,神经统计学】
-
Smooth-AUC: Smoothing the Path Towards Rank-based CTR Prediction 【short paper,基于排序的CTR预估】
-
DisenCTR: Dynamic Graph-based Disentangled Representation for Click-Through Rate Prediction 【基于图的解耦表示】
-
Deep Multi-Representational Item Network for CTR Prediction 【short paper,多重表示商品网络】
-
Gating-adapted Wavelet Multiresolution Analysis for Exposure Sequence Modeling in CTR prediction 【short paper,多分辨率小波分析】
-
MetaCVR: Conversion Rate Prediction via Meta Learning in Small-Scale Recommendation Scenarios 【short paper,小规模推荐场景下的元学习】
-
Adversarial Filtering Modeling on Long-term User Behavior Sequences for Click-Through Rate Prediction 【short paper,对抗过滤建模用户长期行为序列】
-
Clustering based Behavior Sampling with Long Sequential Data for CTR Prediction 【short paper,长序列数据集基于聚类的行为采样】
-
CTnoCVR: A Novelty Auxiliary Task Making the Lower-CTR-Higher-CVR Upper 【short paper,新颖度辅助任务】
1.2 Collaborative Filtering
-
Geometric Disentangled Collaborative Filtering 【几何解耦的协同过滤】
-
Self-Augmented Recommendation with Hypergraph Contrastive Collaborative Filtering 【超图上的对比学习】
-
Investigating Accuracy-Novelty Performance for Graph-based Collaborative Filtering 【图协同过滤在准确度和新颖度上的表现】
-
Unify Local and Global Information for Top-N Recommendation 【综合局部和全局信息】
-
Enhancing Top-N Item Recommendations by Peer Collaboration 【short paper ,同龄人协同】
-
Evaluation of Herd Behavior Caused by Population-scale Concept Drift in Collaborative Filtering 【short paper】
1.3 Sequential/Session-based Recommendations
-
Decoupled Side Information Fusion for Sequential Recommendation 【融合边缘特征的序列推荐】
-
On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation 【自监督知识蒸馏】
-
Multi-Agent RL-based Information Selection Model for Sequential Recommendation 【多智能体信息选择】
-
An Attribute-Driven Mirroring Graph Network for Session-based Recommendation 【特征驱动的反射图网络】
-
When Multi-Level Meets Multi-Interest: A Multi-Grained Neural Model for Sequential Recommendation 【多粒度网络】
-
Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation 【考虑价格和兴趣的推荐】
-
AutoGSR: Neural Architecture Search for Graph-based Session Recommendation 【面向图会话推荐的网络结构搜索】
-
Ada-Ranker: A Data Distribution Adaptive Ranking Paradigm for Sequential Recommendation 【数据分布自适应排序】
-
Multi-Faceted Global Item Relation Learning for Session-Based Recommendation 【多面全局商品关系学习】
-
ReCANet: A Repeat Consumption-Aware Neural Network for Next Basket Recommendation in Grocery Shopping 【考虑重复消费的网络】
-
Determinantal Point Process Set Likelihood-Based Loss Functions for Sequential Recommendation 【基于DPP的损失函数】
-
Positive, Negative and Neutral: Modeling Implicit Feedback in Session-based News Recommendation 【建模隐式反馈】
-
Coarse-to-Fine Sparse Sequential Recommendation 【short paper,粗到细的稀疏序列化推荐】
-
Dual Contrastive Network for Sequential Recommendation 【short paper,双对比网络】
-
Explainable Session-based Recommendation with Meta-Path Guided Instances and Self-Attention Mechanism 【short paper, 基于元路径指导和自注意力机制的可解释会话推荐】
-
Item-Provider Co-learning for Sequential Recommendation 【short paper,商品-商家一同训练】
-
RESETBERT4Rec: A Pre-training Model Integrating Time And User Historical Behavior for Sequential Recommendation 【short paper,融合时间和用户历史行为的预训练模型】
-
Enhancing Hypergraph Neural Networks with Intent Disentanglement for Session-based Recommendation【short paper,意图解耦增强超图神经网络】
-
CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space 【short paper,在一致表示空间上的简单有效会话推荐】
-
DAGNN: Demand-aware Graph Neural Networks for Session-based Recommendation 【short paper, 需求感知的图神经网络】
-
Progressive Self-Attention Network with Unsymmetrical Positional Encoding for Sequential Recommendation 【short paper,使用非对称位置编码的自注意力网络】
-
ELECRec: Training Sequential Recommenders as Discriminators 【short paper,训练序列推荐模型作为判别器】
-
Exploiting Session Information in BERT-based Session-aware Sequential Recommendation 【short paper,在基于BERT的模型中利用会话信息】
1.4 Conversational Recommender System
-
Learning to Infer User Implicit Preference in Conversational Recommendation 【学习推测用户隐偏好】
-
User-Centric Conversational Recommendation with Multi-Aspect User Modeling 【多角度用户建模】
-
Variational Reasoning about User Preferences for Conversational Recommendation 【用户偏好的变分推理】
-
Analyzing and Simulating User Utterance Reformulation in Conversational Recommender Systems 【对话推荐中模仿用户言论】
-
Improving Conversational Recommender Systems via Transformer-based Sequential Modelling【short paper,基于Transformer的序列化建模】
-
Conversational Recommendation via Hierarchical Information Modeling 【short paper,层次化信息建模】
1.5 POI Recommendation
-
Hierarchical Multi-Task Graph Recurrent Network for Next POI Recommendation 【多任务图循环网络】
-
Learning Graph-based Disentangled Representations for Next POI Recommendation 【学习基于图的解耦表示】
-
GETNext: Trajectory Flow Map Enhanced Transformer for Next POI Recommendation 【轨迹图加强的Transformer】
-
Next Point-of-Interest Recommendation with Auto-Correlation Enhanced Multi-Modal Transformer Network 【short paper,自修正的多模态Transformer】
-
Empowering Next POI Recommendation with Multi-Relational Modeling 【多重关系建模】
1.6 Cross-domain/Multi-behavior Recommendation
-
Co-training Disentangled Domain Adaptation Network for Leveraging Popularity Bias in Recommenders 【训练解耦的域适应网络来利用流行度偏差】
-
DisenCDR: Learning Disentangled Representations for Cross-Domain Recommendation 【解耦表示】
-
Doubly-Adaptive Reinforcement Learning for Cross-Domain Interactive Recommendation 【双重适应的强化学习】
-
Exploiting Variational Domain-Invariant User Embedding for Partially Overlapped Cross Domain Recommendation 【域不变的用户嵌入】
-
Multi-Behavior Sequential Transformer Recommender 【多行为序列化Transformer】
1.7 Knowledge-aware Recommendation
-
Knowledge Graph Contrastive Learning for Recommendation 【知识图谱上的对比学习】
-
Multi-level Cross-view Contrastive Learning for Knowledge-aware Recommender System 【多级交叉视图的对比学习】
-
Alleviating Spurious Correlations in Knowledge-aware Recommendations through Counterfactual Generator 【利用反事实生成器缓解假知识】
-
HAKG: Hierarchy-Aware Knowledge Gated Network for Recommendation 【层次化知识门控网络】
-
KETCH: Knowledge Graph Enhanced Thread Recommendation in Healthcare Forums 【医疗论坛上的知识图谱增强的推荐】
1.8 News Recommendation
-
ProFairRec: Provider Fairness-aware News Recommendation 【商家公平的新闻推荐】
-
Positive, Negative and Neutral: Modeling Implicit Feedback in Session-based News Recommendation 【建模隐式反馈】
-
FUM: Fine-grained and Fast User Modeling for News Recommendation 【short paper,细粒度快速的用户建模】
-
Is News Recommendation a Sequential Recommendation Task? 【short paper,新闻推荐是序列化推荐吗】
-
News Recommendation with Candidate-aware User Modeling 【short paper,候选感知的用户建模】
-
MM-Rec: Visiolinguistic Model Empowered Multimodal News Recommendation 【short paper,视觉语言学增强的多模态新闻推荐】
1.9 others
-
CAPTOR: A Crowd-Aware Pre-Travel Recommender System for Out-of-Town Users 【为乡村用户提供的旅游推荐】
-
PERD: Personalized Emoji Recommendation with Dynamic User Preference 【short paper,个性化表情推荐】
-
Item Similarity Mining for Multi-Market Recommendation 【short paper,多市场推荐中的商品相似度挖掘】
-
A Content Recommendation Policy for Gaining Subscribers 【short paper,为提升订阅者的内容推荐策略】
-
Thinking inside The Box: Learning Hypercube Representations for Group Recommendation 【超立方体表示用于组推荐】
2.按照主要技术划分
2.1 GNN-based
-
Hierarchical Multi-Task Graph Recurrent Network for Next POI Recommendation 【多任务图循环网络】
-
An Attribute-Driven Mirroring Graph Network for Session-based Recommendation 【特征驱动的反射图网络】
-
Co-clustering Interactions via Attentive Hypergraph Neural Network 【超图神经网络聚类交互】
-
Graph Trend Filtering Networks for Recommendation 【图趋势过滤网络】
-
EFLEC: Efficient Feature-LEakage Correction in GNN based Recommendation Systems 【short paper,高效的特征泄露修正】
-
DH-HGCN: Dual Homogeneity Hypergraph Convolutional Network for Multiple Social Recommendations 【short paper,双同质超图卷积网络】
-
Enhancing Hypergraph Neural Networks with Intent Disentanglement for Session-based Recommendation【short paper,意图解耦增强超图神经网络】
-
DAGNN: Demand-aware Graph Neural Networks for Session-based Recommendation 【short paper, 需求感知的图神经网络】
2.2 RL-based
-
Locality-Sensitive State-Guided Experience Replay Optimization for Sparse-Reward in Online Recommendation 【在线推荐中的稀疏奖励问题】
-
Multi-Agent RL-based Information Selection Model for Sequential Recommendation 【多智能体信息选择】
-
Rethinking Reinforcement Learning for Recommendation: A Prompt Perspective 【从提示视角看用于推荐的强化学习】
-
Doubly-Adaptive Reinforcement Learning for Cross-Domain Interactive Recommendation 【双重适应的强化学习】
-
MGPolicy: Meta Graph Enhanced Off-policy Learning for Recommendations 【元图增强的离线策略学习】
-
Value Penalized Q-Learning for Recommender Systems 【short paper,值惩罚的Q-Learning】
-
Revisiting Interactive Recommender System with Reinforcement Learning 【short paper,回顾基于强化学习的交互推荐】
2.3 Contrastive Learning based
-
A Review-aware Graph Contrastive Learning Framework for Recommendation 【考虑评论的图对比学习】
-
Are Graph Augmentations Necessary? Simple Graph Contrastive Learning for Recommendation 【简单的图对比学习方法】
-
Knowledge Graph Contrastive Learning for Recommendation 【知识图谱上的对比学习】
-
Self-Augmented Recommendation with Hypergraph Contrastive Collaborative Filtering 【超图上的对比学习】
-
Multi-level Cross-view Contrastive Learning for Knowledge-aware Recommender System 【多级交叉视图的对比学习】
-
Dual Contrastive Network for Sequential Recommendation 【short paper,双对比网络】
-
Improving Micro-video Recommendation via Contrastive Multiple Interests 【short paper,对比多兴趣提升短视频推荐】
-
An MLP-based Algorithm for Efficient Contrastive Graph Recommendations 【short paper,基于MLP的算法实现高效图对比】
-
Multi-modal Graph Contrastive Learning for Micro-video Recommendation 【short paper,多模态图对比学习】
-
Towards Results-level Proportionality for Multi-objective Recommender Systems 【short paper,动量对比方法】
-
Socially-aware Dual Contrastive Learning for Cold-Start Recommendation 【short paper,社交感知的双重对比学习】
2.4 AutoML-based Recommender System
-
Single-shot Embedding Dimension Search in Recommender System 【嵌入维度搜索】
-
AutoLossGen: Automatic Loss Function Generation for Recommender Systems 【自动损失函数生成】
-
NAS-CTR: Efficient Neural Architecture Search for Click-Through Rate Prediction 【高效的网络结构搜索】
2.5 Others
-
Forest-based Deep Recommender 【深度森林】
-
Deployable and Continuable Meta-Learning-Based Recommender System with Fast User-Incremental Updates 【基于元学习的可部署可拓展推荐系统】
3.按照研究话题划分
3.1 Bias/Debias in Recommender System
-
Interpolative Distillation for Unifying Biased and Debiased Recommendation
-
Co-training Disentangled Domain Adaptation Network for Leveraging Popularity Bias in Recommenders 【训练解耦的域适应网络来利用流行度偏差】
-
Bilateral Self-unbiased Recommender Learning from Biased Implicit Feedback 【双边去偏】
-
Mitigating Consumer Biases in Recommendations with Adversarial Training 【short paper,对抗训练去偏】
-
Neutralizing Popularity Bias in Recommendation Models 【short paper,中和流行度偏差】
-
DeSCoVeR: Debiased Semantic Context Prior for Venue Recommendation 【short paper,在场所推荐中去除语义上下文先验】
3.2 Explanation in Recommender System
-
Post Processing Recommender Systems with Knowledge Graphs for Recency, Popularity, and Diversity of Explanations 【使用知识图谱为推荐生成崭新的、多样的解释】
-
PEVAE: A hierarchical VAE for personalized explainable recommendation. 【利用层次化VAE进行个性化可解释推荐】
-
Explainable Session-based Recommendation with Meta-Path Guided Instances and Self-Attention Mechanism 【short paper, 基于元路径指导和自注意力机制的可解释会话推荐】
3.3 Long-tail/Cold-start in Recommender System
-
Socially-aware Dual Contrastive Learning for Cold-Start Recommendation 【short paper,社交感知的双重对比学习】
-
Transform Cold-Start Users into Warm via Fused Behaviors in Large-Scale Recommendation 【short paper,通过融合行为转换冷启动用户】
-
Generative Adversarial Framework for Cold-Start Item Recommendation 【short paper,针对冷启动商品的生成对抗框架】
-
Improving Item Cold-start Recommendation via Model-agnostic Conditional Variational Autoencoder 【short paper,模型无关的自编码器提升商品冷启动推荐】
3.4 Fairness in Recommender System
-
Joint Multisided Exposure Fairness for Recommendation 【综合考虑多边的曝光公平性】
-
ProFairRec: Provider Fairness-aware News Recommendation 【商家公平的新闻推荐】
-
CPFair: Personalized Consumer and Producer Fairness Re-ranking for Recommender Systems 【用户和商家公平的重排序】
-
Explainable Fairness for Feature-aware Recommender Systems 【考虑特征的推荐系统中的可解释公平】
-
Selective Fairness in Recommendation via Prompts 【short paper,通过提示保证可选的公平性】
-
Regulating Provider Groups Exposure in Recommendations 【short paper,调整商家组曝光】
3.5 Diversity in Recommender System
-
DAWAR: Diversity-aware Web APIs Recommendation for Mashup Creation based on Correlation Graph 【多样化Web API推荐】
-
Mitigating the Filter Bubble while Maintaining Relevance: Targeted Diversification with VAE-based Recommender Systems 【short paper,定向多样化】
-
Diversity vs Relevance: a practical multi-objective study in luxury fashion recommendations 【short paper,奢侈品推荐中的多目标研究】
3.6 Attack/Denoise in Recommender System
-
Learning to Denoise Unreliable Interactions for Graph Collaborative Filtering 【数据去噪】
-
Less is More: Reweighting Important Spectral Graph Features for Recommendation 【评估重要的图谱特征】
-
Denoising Time Cycle Modeling for Recommendation 【short paper,去噪时间循环建模】
-
Adversarial Graph Perturbations for Recommendations at Scale 【short paper,大规模推荐中的对抗图扰动】
3.7Others
-
Privacy-Preserving Synthetic Data Generation for Recommendation 【隐私保护的仿真数据生成】
-
User-Aware Multi-Interest Learning for Candidate Matching in Recommenders 【使用用户多兴趣学习进行候选匹配】
-
User-controllable Recommendation Against Filter Bubbles 【用户可控的推荐】
-
Rethinking Correlation-based Item-Item Similarities for Recommender Systems 【short paper,反思基于关系的商品相似度】
-
ReLoop: A Self-Correction Learning Loop for Recommender Systems 【short paper,推荐系统中的自修正循环学习】
-
Towards Results-level Proportionality for Multi-objective Recommender Systems 【short paper,结果均衡的多目标推荐系统】
4.其他研究方向
4.1 QA
-
DGQAN: Dual Graph Question-Answer Attention Networks for Answer Selection 【双图注意力网络】
-
Counterfactual Learning To Rank for Utility-Maximizing Query Autocompletion 【反事实学习】
-
PTAU: Prompt Tuning for Attributing Unanswerable Questions 【提示微调】
-
Conversational Question Answering on Heterogeneous Sources 【异质来源的问答】
-
A Non-Factoid Question-Answering Taxonomy
-
QUASER: Question Answering with Scalable Extractive Rationalization
-
Detecting Frozen Phrases in Open-Domain Question Answering 【short paper 在开放域问答中检测固定短语】
-
Answering Count Query with Explanatory Evidence 【short paper】
4.1 Knowledge Graph
-
Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion 【多模态知识图谱补全】
-
Incorporating Context Graph with Logical Reasoning for Inductive Relation Prediction 【合并上下文图和逻辑推理进行归纳式关系预测】
-
Meta-Knowledge Transfer for Inductive Knowledge Graph Embedding【元知识迁移解决归纳式知识图谱嵌入】
-
Re-thinking Knowledge Graph Completion Evaluation from an Information Retrieval Perspective 【从信息检索视角思考知识图谱补全的评测】
-
Relation-Guided Few-Shot Relational Triple Extraction 【short paper,关系指导的few-shot三元组抽取】
4.2 Conversation/ Dialog
-
Unified Dialog Model Pre-training for Task-Oriented Dialog Understanding and Generation 【统一对话理解和生成的预训练模型】
-
Interacting with Non-Cooperative User: A New Paradigm for Proactive Dialogue Policy 【主动对话策略的新范式】
-
COSPLAY: Concept Set Guided Personalized Dialogue System 【概念集合指导的个性化对话系统】
-
Understanding User Satisfaction with Task-Oriented Dialogue Systems 【理解用户满意度】
-
A Multi-Task Based Neural Model to Simulate Users in Goal Oriented Dialogue Systems 【short paper 多任务模型仿真用户】
-
Task-Oriented Dialogue System as Natural Language Generation 【short paper,自然语言生成的对话系统】
4.3 Summarization
-
HTKG: Deep Keyphrase Generation with Neural Hierarchical Topic Guidance
-
V2P: Vision-to-Prompt based Multi-Modal Product Summary Generation
-
Unifying Cross-lingual Summarization and Machine Translation with Compression Rate 【使用压缩率统一跨语言总结和机器翻译】
-
ADPL: Adversarial Prompt-based Domain Adaptation for Dialogue Summarization with Knowledge Disentanglement 【基于提示的对抗领域自适应】
-
Summarizing Legal Regulatory Documents using Transformers 【short ,使用Transformers总结法律监管文档】
-
QSG Transformer: Transformer with Query-Attentive Semantic Graph for Query-Focused Summarization 【short paper】
-
MuchSUM: Multi-channel Graph Neural Network for Extractive Summarization 【short paper,多通道图神经网络】
-
Lightweight Meta-Learning for Low-Resource Abstractive Summarization 【short paper, 轻量级元学习】
-
Extractive Elementary Discourse Units for Improving Abstractive Summarization 【short paper】
4.4 Multi-Modality
-
Tag-assisted Multimodal Sentiment Analysis under Uncertain Missing Modalities
-
Progressive Learning for Image Retrieval with Hybrid-Modality Queries
-
CenterCLIP: Token Clustering for Efficient Text-Video Retrieval
-
Multimodal Entity Linking with Gated Hierarchical Fusion and Contrastive Training
-
CRET: Cross-Modal Retrieval Transformer for Efficient Text-Video Retrieval
-
Bit-aware Semantic Transformer Hashing for Multi-modal Retrieval
-
Video Moment Retrieval from Text Queries via Single Frame Annotation
-
Multimodal Disentanglement Variational AutoEncoders for Zero-Shot Cross-Modal Retrieval
-
A Multitask Framework for Sentiment, Emotion and Sarcasm aware Cyberbullying Detection in Multi-modal Code-Mixed Memes
-
Animating Images to transfer CLIP for Video-Text Retrieval 【short paper, 使用CLIP进行视频-文本检索】
-
Image-Text Retrieval via Contrastive Learning with Auxiliary Generative Features and Support-set Regularization 【short paper】
-
An Efficient Fusion Mechanism for Multimodal Low-resource Setting 【short paper,在低资源下的一种高效融合机制】
4.5 Generation
-
Mutual Disentanglement Learning for Joint Fine-Grained Sentiment Classification and Controllable Text Generation
-
Target-aware Abstractive Related Work Generation with Contrastive Learning 【利用对比学习生成生成相关工作】
-
Generating Clarifying Questions with Web Search Results 【利用Web搜索结果生成清晰问题】
-
Choosing The Right Teammate For Cooperative Text Generation 【short paper 】
4.6 Representation Learning
-
Structure and Semantics Preserving Document Representations 【保留结构和语义的文档表示】
-
Unsupervised Belief Representation Learning with Information-Theoretic Variational Graph Auto-Encoders
关于我
你好,我是对白,清华计算机硕士毕业,现大厂算法工程师,拿过8家大厂算法岗SSP offer(含特殊计划),薪资40+W-80+W不等。
高中荣获全国数学和化学竞赛二等奖。
本科独立创业五年,两家公司创始人,拿过三百多万元融资(已到账),项目入选南京321高层次创业人才引进计划。创业做过无人机、机器人和互联网教育,保研清华后退居股东。
我每周至少更新三篇原创,分享人工智能前沿算法、创业心得和人生感悟。我正在努力实现人生中的第二个小目标,上方关注后可以加我微信交流。
期待你的关注,我们一起悄悄拔尖,惊艳所有