Binary Generative Adversarial Networks for Image Retrieval

论文杂记
上一篇 主目录 下一篇


前言

在本文中,作者提出了BGAN(binary generative adversarial networks),利用无监督的方式实现了图片检索。
在文中作者主要解决了两个问题:

  • 如何在没有relaxation下的情况下,生成图片的hash(二进制)表示。
  • 如何利用hash实现准备的图片检索。

作者通过设计了新的激活函数和目标函数解决了这个问题。

关键词:非监督、二进制生成对抗性网络、
论文《Binary Generative Adversarial Networks for Image Retrieval》下载地址
或者联系博主获取,邮箱:shaneholmes@qq.com

建议阅读:《简单理解与实验生成对抗网络GAN》
建议观看:李宏毅对抗生成网络(GAN)国语教程(2018)


1 预备知识

1.1 汉明距离

Hamming Distance汉明距离使用在数据传输差错控制编码里面的,汉明距离是一个概念,它表示两个(相同长度)字对应位不同的数量,我们以d(x,y)表示两个字x,y之间的汉明距离。对两个字符串进行异或运算(不同为1,相同为0),并统计结果为1的个数(也就是对应位置不同字符的个数),那么这个数就是汉明距离。
在信息论中,两个等长字符串之间的汉明距离是两个字符串对应位置的不同字符的个数。换句话说,它就是将一个字符串变换成另外一个字符串所需要替换的字符个数。例如:

  • 1011101 与 1001001 之间的汉明距离是 2
    2143896 与 2233796 之间的汉明距离是 3
    “toned” 与 “roses” 之间的汉明距离是 3

1.2

2 论文总体介绍

2.1 网络架构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值