Anaconda的python虚拟环境中安装cudatoolkit和cudnn加速tensorflow

本文介绍了如何在已安装cuda10.0的环境下,通过Anaconda创建Python虚拟环境,并安装特定版本的tensorflow-gpu、cudatoolkit和cudnn。首先激活虚拟环境,然后使用清华源通过pip安装tensorflow-gpu,接着查找并安装匹配的cudatoolkit和cudnn版本。最后,通过运行代码验证tensorflow是否支持GPU加速。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 背景

由于本地安装了cuda 10.0, 但是现在需要在Anaconda中安装不同的python虚拟环境来安装tensorflow-gpu、对应的cudatoolkit、对应的cudnn来加速,下面是具体的演示流程

2. 安装

我这里以安装tensorflow-gpu==1.9.0为例,首先进入python的虚拟环境,source activate py37_tf

通过"conda search tensorflow-gpu", 可以看到有满足安装版本要求的tensorflow-gpu

然后使用清华源安装: pip install tensorflow-gpu==1.9.0 -i Simple Index

 安装成功以后去网络上搜索"tensorflow和GPU的对应关系"

可以看到需要对应安装cudatoolkit==9.0, 我们在通过命令: "conda search cudatoolkit"来看一下是否有此cudatoolkit的安装包,输入"conda search cudatoolkit"

发现是有这个cudatoolkit 9.0的,于是执行: conda install cudatoolkit==9.0

安装成功cudatoolkit之后,需要再安装对应版本的cudnn, 于是通过conda search cudnn查看一下,发现也是有可以安装的版本

于是执行: conda install cudnn==7.3.1

 则可以安装成功

上面的tensorflow-gpu、对应的cudatoolkit、对应的cudnn都安装好了之后,需要查看先tensorflow是否支持gpu加速,执行:

import tensorflow as tf

tf.test.is_gpu_available()

发现输出结果为True, 则到此支持GPU加速的tensorflow-gpu安装完毕。

参考链接:

【深度学习】不同虚拟环境安装不同Pytorch版本_不同环境安装不同pyorch_视觉闫小亘的博客-CSDN博客

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鸡啄米的时光机

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值