TensorRT笔记(11)使用量化网络

本文详细介绍了如何使用TensorFlow进行量化意识训练(QAT),并将其转换为ONNX量化模型,最后在TensorRT中导入和运行这些量化模型。重点讨论了量化张量的范围限制、对称量化以及TensorFlow到ONNX的转换过程。
摘要由CSDN通过智能技术生成

10.使用量化网络

量化网络由显式量化反量化节点组成,以便将张量从FP32转换为INT8,反之亦然。
NVIDIA®TensorRT™支持带有QuantizeLinearDequantizeLinear节点的量化ONNX模型。
量化张量x

y = saturate((x / y_scale) + y_zero_point), where y ∈ [-128, 127]

消除张量x

y = (x - x_zero_point) * x_scale

TensorRT仅支持[-128,127]范围内的INT8激活和[-127,127]范围内的INT8权重。由于遗留原因,权重的范围与激活的范围略有不同。此外,zero_point必须为0,因为TensorRT仅支持对称量化。

<
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yhwang-hub

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值