机器学习项目(五) 电影推荐系统(七)Wide&Deep

本文介绍了谷歌2016年提出的Wide&Deep模型,该模型结合了逻辑回归(LR)的 Memorization 和深度学习的 Generalization,通过原始特征、交叉特征和学习的dense embeddings来提高分类和回归任务的性能。模型的优势在于减少了人工特征工程,并能对未见过的特征组合进行泛化,但可能对小众商品的泛化过度。
摘要由CSDN通过智能技术生成

Wide&Deep

在这里插入图片描述
Wide&Deep模型是谷歌在2016年提出的一种用于分类、回归任务的模型

Memorization:
LR模型+大量的原始特征和叉乘特征作为输入,“记忆”历史数据中曾共同出现过的特征对。

Generalization:
为sparse特征学习低维的dense embeddings来捕获特征相关性,学习到的embeddings本身带有一定的语义信息
a ( l + 1 ) = f ( W ( l ) a ( l ) + b ( l ) ) a^{(l+1)} = f(W^{(l)}a^{(l)} + b^{(l)}) a(l+1)=f(W(l)a(l)+b(l))
优点:减少人工参与,并且可以对历史上没有出现的特征组合有更好的泛化能力
缺点:对于一些小众的商品,很难学到有效的embedding,会导致泛化过度

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import sys
import tempfile

import pandas as pd
from six.moves import urllib
import tensorflow as tf


CSV_COLUMNS = [
    "age", "workclass", "fnlwgt", "education", "education_num",
    "marital_status", "occupation", "relationship", "race", "gender",
    "capital_gain", "capital_loss", "hours_per_week", "native_country",
    "income_bracket"
]

gender = tf.feature_column.categorical_column_with_vocabulary_list(
    "gender", ["Female", "Male"])
education = tf.feature_column.categorical_column_with_vocabulary_list(
    "education", [
        "Bachelors", "HS-gra
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值