FatMouse believes that the fatter a mouse is, the faster it runs. To disprove this, you want to take the data on a collection of mice and put as large a subset of this data as possible into a sequence so that the weights are increasing, but the speeds are decreasing.
The data for a particular mouse will consist of a pair of integers: the first representing its size in grams and the second representing its speed in centimeters per second. Both integers are between 1 and 10000. The data in each test case will contain information for at most 1000 mice.
Two mice may have the same weight, the same speed, or even the same weight and speed.
W m[1 ] < W m[2 ] < ... < W m[n ]
and
S m[1 ] > S m[2 ] > ... > S m[n ]
In order for the answer to be correct, n should be as large as possible.
All inequalities are strict: weights must be strictly increasing, and speeds must be strictly decreasing. There may be many correct outputs for a given input, your program only needs to find one.
6008 1300 6000 2100 500 2000 1000 4000 1100 3000 6000 2000 8000 1400 6000 1200 2000 1900
4 4 5 9 7
做法,简单线性dp,排个序,然后就像跑最长上升子序列一样就可以了。
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1e3+7;
const int mod = 1e9+7;
int n;
struct node
{
int w,s;
int id;
bool operator < (const node &a)const
{
if(w != a.w)return w < a.w;
else return s < a.s;
}
} p[MAXN];
struct dp
{
int num;
int now,pre;
} dp[MAXN];
int main()
{
n = 1;
while(~scanf("%d%d",&p[n].w,&p[n].s))
{
p[n].id = n;
n++;
}
sort(p+1,p+1+n);
for(int i = 1 ; i <= n ; ++i)
{
int MAX = 0,pos = 0;
for(int j = 1 ; j < i ; ++j)
{
if(p[i].w > p[j].w && p[i].s < p[j].s && dp[j].num > MAX)
{
MAX = dp[j].num;
pos = j;
}
}
dp[i].now = i;
dp[i].pre = pos;
dp[i].num = MAX + 1;
}
int MAX = 0,pos = 0;
for(int i = 1 ; i <= n ; ++i)if(dp[i].num > MAX)
{
MAX = dp[i].num;
pos = i;
}
printf("%d\n",MAX);
stack<int>S;
int e = pos;
while(e)
{
S.push(e);
e = dp[e].pre;
}
while(!S.empty())
{
printf("%d\n",p[S.top()].id);
S.pop();
}
return 0;
}