poj3522 Slim Span

该博客探讨了一种在无向图中寻找一棵树的方法,目标是使树中最大边与最小边的差值最小。通过枚举最小边并构建最小生成树,可以求得最大边,进而计算差值并更新答案。
摘要由CSDN通过智能技术生成

题意:
让你在一个无向图中找到一棵树,使得树中最大边和最小边之差最小。
思路:如果我们知道最小边是谁的话,那么最小的最大边一定是最小生成树中的最大边了。那么不难想到我们可以枚举最小边,然后构造最小生成树,然后用最大边减去最小边更新答案。

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
using namespace std;
const int MAXN = 100+5;
const double eps = 1e-5;
const double inf = 1e9;
int n,m;
struct edge
{
    int u,v,w;
    bool operator < (const edge &a)const
    {
        return w < a.w;
    }
} edge[MAXN*MAXN];

int pre[MAXN];
int findx(int x)
{
    return pre[x] == x?x:pre[x] = findx(pre[x]);
}
int ans;

void kruskal()
{
    ans = inf;
    //枚举最小边i
    for(int i = 0; i < m; ++i)
    {
        for(int j = 1; j <= n; ++j)pre[j] = j;
        pre[findx(edge[i].v)] = findx(edge[i].u);
        int cnt = 1;
        if(cnt == n-1)
        {
            puts("0");
            return;
        }
        //构造最小生成树
        bool flag = 0;
        for(int j = i+1; j < m; ++j)
        {
            int u = edge[j].u;
            int v = edge[j].v;
            int w = edge[j].w;
            u = findx(u),v = findx(v);
            if(u != v)
            {
                pre[v] = u;
                cnt++;
                if(cnt == n-1)
                {
                    ans = min(ans,w - edge[i].w);
                    flag = 1;
                    break;
                }
            }
        }
        if(!flag)break;
    }
    if(ans == inf)puts("-1");
    else printf("%d\n",ans);
}


int main()
{
    while(~scanf("%d%d",&n,&m)&&n)
    {
        for(int i = 0; i < m; ++i)
        {
            scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
        }
        sort(edge,edge+m);
        kruskal();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值